A Royal Road to Geometry: Or, an Easy and Familiar Introduction to the Mathematics. ... By Thomas Malton. ... |
Hva folk mener - Skriv en omtale
Vi har ikke funnet noen omtaler på noen av de vanlige stedene.
Andre utgaver - Vis alle
A Royal Road to Geometry: Or, an Easy and Familiar Introduction to the ... Thomas Malton Ingen forhåndsvisning tilgjengelig - 2016 |
Vanlige uttrykk og setninger
ABCD added alſo Altitudes analogous Area Baſe becauſe biſected Book called Center Chord Circle Circumference common Cone conf conſequently Conſtruction contained cuting Cylinder Demonſtration deſcribe Diagonal Diameter difference divided draw drawn equal equal Angles Euclid evident extreme fame Feet Figure firſt formed four fourth given given Line greater half Hence Inches inſcribed join laſt leſs manner mean meaſure multiplied muſt oppoſite parallel Parallelogram Parallelopiped Pentagon perpendicular Plane Point Poligon Priſm Prob PROBLEM produced Proportion Propoſition proved Pyramid Quantities Radius Ratio Rect Rectangle reſpectively Right Angles Right Line ſame ſay ſeeing Segment Sides ſimilar Solid Sphere Square ſuch Surface taken Terms THEOREM third thoſe touch Triangle uſe wherefore whole whoſe
Populære avsnitt
Side 124 - When you have proved that the three angles of every triangle are equal to two right angles...
Side 221 - All the interior angles of any rectilineal figure, together with four right angles, are equal to twice as many right angles as the figure has sides.
Side 285 - EG, let fall from a point in the circumference upon the diameter, is a mean proportional between the two segments of the diameter DS, EF (p.
Side 284 - IN a right-angled triangle, if a perpendicular be drawn from the right angle to the base, the triangles on each side of it are similar to the whole triangle, and to one another.
Side 186 - From this it is manifest, that if one angle of a triangle be equal to the other two, it is a right angle, because the angle adjacent to it is equal to the same two; and when the adjacent angles are equal, they are right angles.
Side 248 - To express that the ratio of A to B is equal to the ratio of C to D, we write the quantities thus : A : B : : C : D; and read, A is to B as C to D.
Side 161 - In any triangle, if a line be drawn from the vertex at right angles to the base; the difference of the squares of the sides is equal to the difference of the squares of the segments of the base.
Side 160 - In any isosceles triangle, the square of one of the equal sides is equal to the square of any straight line drawn from the vertex to the base plus the product of the segments of the base.
Side 250 - Ratios that are the same to the same ratio, are the same to one another. Let A be to B as C is to D ; and as C to D, so let E be to F.
Side 124 - Angles, taken together, is equal to Twice as many Right Angles, wanting four, as the Figure has Sides.