## Elements of Geometry: Containing the First Six Books of Euclid, with a Supplement on the Quadrature of the Circle and the Geometry of Solids; to which are Added, Elements of Plane and Spherical Trigonometry |

### Hva folk mener - Skriv en omtale

Vi har ikke funnet noen omtaler på noen av de vanlige stedene.

### Andre utgaver - Vis alle

Elements of Geometry: Containing the First Six Books of Euclid: With a ... John Playfair Uten tilgangsbegrensning - 1819 |

Elements of Geometry: Containing the First Six Books of Euclid: With a ... John Playfair Uten tilgangsbegrensning - 1854 |

Elements of Geometry: Containing the First Six Books of Euclid, with a ... John Playfair Uten tilgangsbegrensning - 1824 |

### Vanlige uttrykk og setninger

ABCD altitude angle ABC angle BAC arch base bisected Book called centre circle circle ABC circumference coincide common cosine cylinder definition demonstrated described diameter difference divided double draw drawn equal equal angles equiangular Euclid extremity fall fore four fourth given given straight line greater half inscribed join less Let ABC magnitudes manner meet multiple opposite parallel parallelogram pass perpendicular plane polygon prism produced PROP proportional proposition proved Q. E. D. PROP radius ratio reason rectangle contained rectilineal figure remaining right angles segment shewn sides similar sine solid square straight line Supplement taken tangent THEOR thing third touches triangle ABC wherefore whole

### Populære avsnitt

Side 233 - But because the triangle KGN is isosceles, the angle GKN is equal to the angle GNK, and the angles GMK, GMN are both right angles by construction ; wherefore, the triangles GMK, GMN have two angles of the one equal to two angles of the other, and they have also the side GM common, therefore they

Side 18 - When a straight line standing on another straight line makes the adjacent angles equal to one another, each of the angles is called a right angle; and the straight line which stands on the other is called a perpendicular to it. VIII. An obtuse angle is that which is greater than a right angle.

Side 77 - AB is divided in H, so that the rectangle AB, BH is equal to the square of AH. Let AB be the given straight line; it is required to divide it into two parts, so that the rectangle contained by the whole, and one of the parts, shall be equal

Side 69 - line be divided into two equal parts* and also into two unequal parts ; the rectangle contained by the unequal parts, together with the square of the line between the points of section., is equal to the square of half the line. Let the straight line AB be divided into two equal parts in the

Side 48 - PROP. XXX. THEOR. Straight lines which are parallel to the same straight line are parallel to one another. Let AB, CD, be each of them parallel to EF; AB is also parallel to CD. Let the straight line GHK cut AB, EF, CD ; and because GHK cuts the parallel straight lines

Side 32 - PROP. XI. PROB. To draw a straight line at right angles to a given straight line, from a given point in that line. Let AB be a given straight line, and Ca point given in it; it is required to draw a straight line from the point C at right angles to AB.

Side 75 - PROP. X. THEOR. If a straight line be bisected, and produced to any point, the square* of the whole line thus produced, and the square of the part of it produced, are together double of the square of half the line bisected, and of the square of the line made up of the half

Side 18 - taken, the straight line between them lies wholly in that superficies. VI. A plane rectilineal angle is the inclination of two straight lines to one another, which meet together, but are not in the same straight line. E NB ' When several angles are at one point B, any one of them is

Side 153 - Therefore, &c. QED PROP. IV. THEOR. If the first of four magnitudes has the same ratio to the second which the third has to the fourth, and if any equimultiples whatever be taken of the first and third, and any whatever of the second and fourth; the multiple

Side 50 - angles. Therefore, twice as many right angles as the figure has sides, are equal to all the angles of the figure, together with four right angles, that is, the angles of the figure are equal to twice as many right angles as the figure has sides, wanting four. Because every interior angle ABC, with its adjacent exterior ABD, is