### Hva folk mener -Skriv en omtale

Vi har ikke funnet noen omtaler pċ noen av de vanlige stedene.

### Innhold

 THEOREMS 1 Median 12 Bisector 19 Distance from a Line 42 Centre of Parallelogram 56
 signifies therefore 63 PROBLEMS 86 Construction of Triangles 122 Miscellaneous Problems 131

### Populĉre avsnitt

Side 81 - In every triangle, the square on the side subtending an acute angle is less than the sum of the squares on the sides containing that angle, by twice the rectangle contained by either of these sides, and the straight line intercepted between the perpendicular let fall on it from the opposite angle, and the acute angle.
Side 27 - If two triangles have two sides of the one equal to two sides of the...
Side 135 - PROB. from a given point to draw a straight line equal to a given straight line. Let A be the given point, and BC the given straight line : it is required to draw from the point A a straight line equal to BC.
Side 136 - If, at a point in a straight line, two other straight lines, upon the opposite sides of it, make the adjacent angles together equal to two right angles, these two straight lines shall be in one and the same straight line.
Side 138 - If the square described on one side of a triangle be equal to the sum of the squares described on the other two sides, the angle contained by these two sides is a right angle.
Side 81 - In obtuse-angled triangles, if a perpendicular be drawn from either of the acute angles to the opposite side produced, the square on the side subtending the obtuse angle is greater than the squares on the sides containing the obtuse angle, by twice the rectangle contained by the side...
Side 137 - THE straight lines which join the extremities of two equal and parallel straight lines, towards the same parts, are also themselves equal and parallel.
Side 50 - A line which joins the midpoints of two sides of a triangle is parallel to the third side and equal to half of it.
Side 137 - ... upon the same side together equal to two right angles; the two straight lines shall be parallel to one another.
Side 135 - The angles at the base of an isosceles triangle are equal to one another; and if the equal sides be produced the angles on the other side of the base shall be equal to one another.