## An Introduction to Algebra: With Notes and Observations : Designed for the Use of Schools and Places of Public Education : to which is Added an Appendix on the Application of Algebra to Geometry |

### Inni boken

Resultat 1-5 av 5

Side 36

3. Required the difference of 12: and 3r 7 5 2 4. Required the difference of 15y

and Ho - go doc 5. Required the difference of b-c b + c 6. Required the difference

of a -o- c A a-H a ol, a I 7. Required the difference of a+": and a — -

a ...

3. Required the difference of 12: and 3r 7 5 2 4. Required the difference of 15y

and Ho - go doc 5. Required the difference of b-c b + c 6. Required the difference

of a -o- c A a-H a ol, a I 7. Required the difference of a+": and a — -

**a-Ha**. *f; anda ...

Side 39

It is required to divide w-Ea by ac-Hb ac—b 5x-Fa 52-

*** ------ - , *::=;x+; H– Ans 4. It is required to divide — Q a8+z- y

Here ac ×o-

It is required to divide w-Ea by ac-Hb ac—b 5x-Fa 52-

**Ha**5a-2-1-6aa-**Ha**.2 Here*** ------ - , *::=;x+; H– Ans 4. It is required to divide — Q a8+z- y

**a-Ha**. - 20:2 2Here ac ×o-

**Ha**24"(*-**Ha**)_ 2a: - -- ---. -a8+a;3 2: a:(2°-**Ha**!") a.”—-az-Fao . . . 7 3 5. Side 42

Required the 4th power of

residual quantity may also be readily raised to any power whatever, as follows: 1.

Find the terms without the coefficients, by observing that the index of the first, ...

Required the 4th power of

**a-Ha**; and the 5th power of a-y. RULE II. A binomial orresidual quantity may also be readily raised to any power whatever, as follows: 1.

Find the terms without the coefficients, by observing that the index of the first, ...

Side 43

With Notes and Observations : Designed for the Use of Schools and Places of

Public Education : to which is Added an Appendix on the Application of Algebra

to Geometry John Bonnycastle. EXAMPLES. 1. Let

...

With Notes and Observations : Designed for the Use of Schools and Places of

Public Education : to which is Added an Appendix on the Application of Algebra

to Geometry John Bonnycastle. EXAMPLES. 1. Let

**a-Ha**be involved, or raised to...

Side 144

... 2n n \

observed, that if m be made to represent any whole, or fractional number,

whether positive or negative, *=", a =={x+x+ =– * =e 2n 4 20 0.3 144 BINOMIAL

THEOREM.

... 2n n \

**a-Ha**. n 2n \**a-Ha**. n 2n 3n w U-3: ( )*] &c. a+a; It may here also beobserved, that if m be made to represent any whole, or fractional number,

whether positive or negative, *=", a =={x+x+ =– * =e 2n 4 20 0.3 144 BINOMIAL

THEOREM.

### Hva folk mener - Skriv en omtale

Vi har ikke funnet noen omtaler på noen av de vanlige stedene.

### Andre utgaver - Vis alle

An Introduction to Algebra: With Notes and Observations : Designed for the ... John Bonnycastle Uten tilgangsbegrensning - 1818 |

### Vanlige uttrykk og setninger

a-Ha acº Algebra arise arithmetical mean arithmetical series bers binomial coefficient consequently cube root cubic equation decimal denoted dividend division divisor equal ExAMPLES FOR PRACTICE expressed find the difference find the square find the sum find the value find two numbers geometrical geometrical progression geometrical series give given equation given number greater number greatest common measure Hence improper frac improper fraction infinite series last term letters loga logarithms mixed quantity multiplied natural number negative nth root number of terms number required perpendicular plane triangle PROBLEM proportion quadratic equation question quotient rational reduce the fraction remainder required the numbers Required the sum required to convert required to divide required to find required to reduce result rithm rule second term simple form square number square root substituted subtracted surd tion transposition unknown quantity value of ac Whence whole numbers

### Populære avsnitt

Side 16 - Divide the first term of the dividend by the first term of the divisor, and write the result as the first term of the quotient. Multiply the whole divisor by the first term of the quotient, and subtract the product from the dividend.

Side 26 - To reduce a mixed number to an improper fraction, Multiply the whole number by the denominator of the fraction, and to the product add the numerator; under this sum write the denominator.

Side 33 - Now .} of f- is a compound fraction, whose value is found by multiplying the numerators together for a new numerator, and the denominators for a new denominator.

Side 187 - Ios- y" &cFrom which it is evident, that the logarithm of the product of any number of factors is equal to the sum of the logarithms of those factors. Hence...

Side 91 - To divide the number 90 into four such parts, that if the first be increased by 2, the second diminished by 2, the third multiplied...

Side 39 - ... and the quotient will be the next term of the root. Involve the whole of the root, thus found, to its proper power, which subtract from the given quantity, and divide the first term of the remainder by the same divisor as before ; and proceed in this manner till the whole is finished*.

Side 107 - It is required to divide the number 24 into two such parts, that their product may be equal to 35 times their difference. Ans. 10 and 14.

Side 107 - It is required to divide the number 60 into two such parts, that their product shall be to the sum of their squares in the ratio of 2 to 5.

Side 108 - What two numbers are those whose sum, multiplied by the greater, is equal to 77 ; and whose difference, multiplied by the less, is equal to 12 ? Ans.

Side 36 - Multiply the index of the quantity by the index of the power to which it is to be raised, and the result will be the power required.