# Elements of Geometry: With Practical Applications to Mensuration

Leach, Shewell and Sanborn, 1863 - 320 sider
0 Anmeldelser
Anmeldelsene blir ikke bekreftet, men Google ser etter falskt innhold og fjerner slikt innhold som avdekkes

### Hva folk mener -Skriv en omtale

Vi har ikke funnet noen omtaler pÕ noen av de vanlige stedene.

### Innhold

 PLANE GEOMETRY 7 BOOK II 43 BOOK III 55 BOOK IV 76 BOOK V 118 BOOK VI 142 BOOK VII 165 BOOK VIII 184
 BOOK XII 281 BOOK XIII 301 BOOK XIV 311 LOGARITHMS 2 BOOK II 13 BOOK III 41 BOOK IV 61 BOOK V 72

 BOOK IX 214 BOOK X 238 MENSURATION 253
 BOOK VI 105 A TABLE OF LOGARITHMIC SINES COSINES TANGENTS 17

### Populµre avsnitt

Side 59 - If two triangles have the three sides of the one equal to the three sides of the other, each to each, the triangles are congruent.
Side 37 - All the interior angles of any rectilineal figure, together with four right angles, are equal to twice as many right angles as the figure has sides.
Side 120 - At a point in a given straight line to make an angle equal to a given angle.
Side 52 - If any number of quantities are proportional, any antecedent is to its consequent as the sum of all the antecedents is to the sum of all the consequents. Let a : b = c : d = e :f Now ab = ab (1) and by Theorem I.
Side 19 - In an isosceles triangle, the angles opposite the equal sides are equal.
Side 199 - Any two rectangular parallelopipedons are to each other as the products of their bases by their altitudes ; that is to say, as the products of their three dimensions.
Side 121 - Through a given point to draw a straight line parallel to a given straight line, Let A be the given point, and BC the given straight line : it is required to draw through the point A a straight line parallel to BC.
Side 103 - If two triangles have two angles of the one equal to two angles of the other, each to each, and also one side of the one equal to the corresponding side of the other, the triangles are congruent.
Side 2 - The logarithm of any POWER of a number is equal to the product of the logarithm of the number by the exponent of the power. For let m be any number, and take the equation (Art.
Side 2 - The logarithm of any power of a number is equal to the logarithm of the number multiplied by the exponent of the power.