Sidebilder
PDF
ePub

That is, if four quantities are proportional, any like powers or roots

will be proportional.

[merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small]

That is, In two sets of proportional quantities, the products of the torresponding terms will be proportional.

190. In the proportions which have been considered, it has only been required that the ratio of the first term to the second should be the same as that of the third to the fourth. If we impose the farther condition, that the ratio of the second to the third shall also be the same as that of the first to the second, or of the third to the fourth, we shall have a series of numbers, each one of which, divided by the preceding one, will give the same ratio. Hence, if any term be multiplied by this quotient, the product will be the succeeding term. A series of numbers so formed is called a geometrical progression. Hence,

A Geometrical progression, or progression by quotients, is a series of terms, each of which is equal to the product of that which precedes it, by a constant number, which number is called the ratio of the progression. Thus, in the two series,

[merged small][ocr errors][merged small][merged small]

each term of the first contains that which precedes it twice, or is equal to double that which precedes it; and each term of the second is contained in that which precedes it four times, or is a fourth of

that which precedes it.

These are geometrical progressions. In the first, the ratio is 2; in the second, it is. The first is called an increasing progression, the second a decreasing progression. Let a, b, c, d, e, f, . . . be numbers in a progression by quotients: they are written thus:

...

[merged small][merged small][merged small][ocr errors][ocr errors]

and it is enunciated in the same manner as a progression by differences. It is necessary, however, to make the distinction, that one is a series of equal differences, and the other a series of equal quotients or ratios. It should be remarked that each term is at the same time an antecedent and a consequent, except the first, which is only an antecedent, and the last, which is only a consequent.

191. Let q denote the ratio of the progression

[merged small][ocr errors][ocr errors]

q being >1 when the progression is increasing, and q<1 when it is decreasing. We deduce from the definition the following equations:

b=aq, c=bq=aq2, d=cq=aq3, e=dq=aq1. . .;

and in general, any term n, that is, one which has n-1 terms before it, is expressed by aq"-1,

Let / be this term; we have the formula l=aq”-1, by means of which we can obtain any term without being obliged to find all the terms which precede it. That is, the last term of a geometrical progression is equal to the first term multiplied by the ratio raised to a power whose exponent is one less than the number of terms.

1. Find the 5th term of the progression 2: 4: 8 : 16, &c, in which the first term is 2 and the common ratio 2.

5th term 2 × 24=2 × 16=32.

2. Find the 8th term of the progression 2 6 18: 54 8th term 2 × 37=2×2187=4374.

...

[merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small]

192. We will now proceed to determine the sum of n terms of

[merged small][merged small][merged small][merged small][ocr errors][ocr errors]

b=aq, c=bq, d=cq, e=dq, ... k=iq, l=kq;

and by adding them all together, member to member, we deduce

[merged small][ocr errors][ocr errors][merged small][ocr errors][merged small][merged small]

S-a (S-1)q=Sq-lq, or Sq-S=lq—a;

=

[blocks in formation]

That is, to obtain the sum of the terms of a progression by quotients, multiply the last term by the ratio, subtract the first term from this product, and divide the remainder by the ratio diminished by unity.

1. Find the sum of eight terms of the progression

2 6 18 : 54: 162

: 2×37=4374,

S=

[blocks in formation]

=6560.

[blocks in formation]

3. Find the sum of ten terms of the progression

26 18: 54: 162 .. 2 x 39 39366.

[ocr errors]

Ans. 59048.

4. What debt may be discharged in a year, or twelve months, by paying $1 the first month, $2 the second month, $4 the third month, and so on, each succeeding payment being double the last ; and what will be the last payment?

Ans. Debt, $4095; last payment, $2048.

5. A gentleman married his daughter on New Year's day, and gave her husband 1s. towards her portion, and was to double it on the first day of every month during the year: what was her portion? Ans. £204 15s.

6. A man bought 10 bushels of wheat on the condition that he should pay 1 cent for the 1st bushel, 3 for the second, 9 for the 3rd, and so on to the last: what did he pay for the last bushel and for the ten bushels?

Ans. Last bushel $196,83; total cost $295,24.

193. When the progression is decreasing, we have q<1 and <a; the above formula for the sum is then written under the form a-lq 1-q

S=

positive

in order that the two terms of the fraction may be

By substituting aq-1 for l in the expression for S, it becomes.

[blocks in formation]

1. Find the sum of the terms of the progression

[blocks in formation]

2. Find the sum of the first twelve terms of the progression

[merged small][ocr errors][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small]

We perceive that the principal difficulty consists in obtaining the numerical value of the last term, a tedious operation, even when the number of terms is not very great.

[merged small][merged small][ocr errors][merged small][merged small]

This result, which is sometimes a symbol of indetermination, is also often a consequence of the existence of a common factor (Art. 113), which becomes nothing by making a particular hypothesis respecting the given question. This, in fact, is the case in the present question; for the expression q"-1 is divisible by q-1, (Art. 59), and gives the quotient

[blocks in formation]
« ForrigeFortsett »