Sidebilder
PDF
ePub

=

532. Now we have sin {r+(-1)" 0} sin 0. If then is any angle lying between rπ-π and гπ+ 1⁄2π, where r has some assigned integral value,

[merged small][merged small][ocr errors][merged small][merged small]

Writing here tween (-1)

[ocr errors]

+

2.4 5 2.4.6

1.3.5 sin

[ocr errors]

7

is any angle lying be

=1π+, we have if

and гæ, where r has some assigned integral value,

[merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][ocr errors]

Hence any angle & may be expanded in powers of sin or

of cos y.

533.

The calculation of π.

The two series of Art. 529 enable us to calculate the value of an arc in terms of its sine or tangent. In particular we may find from them the ratio of the circumference to the diameter of a circle; i.e. the value of π.

Using the inverse symbol to represent the circular measure of an acute angle, we have

[merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][ocr errors][merged small][merged small]

534. In the first of the above equations, let. Then sin-1x.

=

π

6

Thus

[blocks in formation]

Taking 3 terms of this series, we have =

mately.

3.14 approxi

After the first few terms, this series does not converge rapidly enough for convenience of calculation.

535. In the second of the equations of Art. 533, put x = 1.

Then tan-1x = 1π.

π

π

1100

[blocks in formation]

+

+

+

...

8 1.3 5.7 9.11

This series is very slowly convergent.

We may however adapt the inverse-tangent series for the purposes of calculation by expressing as the sum or difference of suitable angles.

The excellence of a series for purposes of calculation depends on (1) the rapidity of its convergence, and (2) the simplicity of the operations to be performed.

536. We shall make use of the equation

[blocks in formation]

Here T and t may be chosen at will, and we shall attempt to find simple expressions for the remaining term.

[merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small]

Substituting in (1) for tan-1 or tan- from this last equation we have

[merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small]

This is convenient, since 99 has the simple divisors 9 and 11.

[merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][merged small]

This series is quickly converging, but the divisor 239 is inconveniently large.

540. We have thus found five substitutions for π by means of which its value may be calculated more or less conveniently. Thus

[merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][ocr errors][ocr errors][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][merged small]

Series (1) is known as Euler's; series (5) as Machin's; the

other series were suggested by Hutton, whose method has been followed in the above derivations.

+

...)

1

1

+

+

5.2394 7.2396

+ .....) (5).

The last series may be simplified by noting that
tan-1 1
235 = tan-1
-17-tan-11

which the student should prove.

999

541. We will now prove the important proposition that and also 2 are incommensurable. For this purpose it will be necessary to give a short account of continued fractions.

Continued Fractions.

542. A continued fraction is a fraction of the form

[merged small][merged small][ocr errors][merged small][merged small][merged small]

We will give a few theorems on fractions of the form

[ocr errors][subsumed][ocr errors][merged small]

are all positive. Such continued fractions are said to be of the second class.

[merged small][ocr errors][merged small][merged small][merged small][ocr errors]

fractions obtained by stopping at these are called the convergents: and the fractions obtained by omitting them are called the remainders.

[merged small][merged small][ocr errors][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][subsumed][ocr errors][ocr errors][merged small][merged small][ocr errors][subsumed][merged small][merged small]

Also, if F is the fraction, and în the nth remainder,

[merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][ocr errors][ocr errors][merged small][merged small]
[blocks in formation]

543.

ar - Yn

Theorem I. The convergents are in ascending order

of magnitude, provided that they are all positive.

[blocks in formation]

Assuming, then, that a convergent yn of the nth order is greater than Yn-1 of the (n-1)th order, we see that c2+1 of the (n + 1)th order is greater than c2 of the nth order.

[merged small][merged small][merged small][ocr errors]

1st convergent Hence, universally, a convergent is increased

b1
α1

by taking an additional component.

544. Theorem II. If the denominator of every component exceeds the numerator by unity at least, the continued fraction is itself positive and not greater than unity.

For assuming that yn of the nth order is not greater than unity,

[ocr errors][merged small][merged small][merged small][merged small]

than unity; and is positive, since a, is not less than Yn.

b1 ат

Now clearly the 1st convergent is not greater than unity.

Hence no convergent can be greater than unity; and all are positive.

And, therefore, the fraction itself is positive but not greater than unity.

545. Theorem III. If the denominator of every component exceeds the numerator by unity at least, while that of the first exceeds its numerator by more than unity, the continued fraction is itself less than unity.

J..T.

25

« ForrigeFortsett »