Sidebilder
PDF
ePub

Therefore an angle has been drawn whose sine or whose cosine has the given value r.

Q.E.F.

If r had been greater than 1, OM would have been greater than OA, M would have been outside the circle, and MP would not have cut the circle at all. Hence the method would have failed as we should expect.

99. Given the value of the sine or cosine of any angle, to find the other ratios.

In other words: To express the other ratios in terms of the sine or cosine.

As before, let r be the value of the given ratio.

Construct the figure of the last article.

Then, by Euc. I. 47, MP2+ OM2 = OP2,

i.e. MP22 = 1,

.. MP2=1- 22,

.. MP=√(1- 23).

(i) Suppose that r is the sine of the required angle. Then MPO is the required angle, which we may call A.

[blocks in formation]

(ii) Suppose that r is the cosine of the required angle. Then MOP is the required angle, which we may call A.

[blocks in formation]

100. Given the value of the tangent or cotangent of any angle, to draw the angle.

Let the given value be r, i.e. r : 1.

Take OM=1: draw MP at rightangles to OM, and let MP = r.

OP.

Then tan MOP = cot MPO

Join

√(1+r2)

P

[blocks in formation]

101.

Q. E. F.

M

Given the value of the tangent or cotangent of any angle, to find the other ratios.

In other words: To express the other ratios in terms of the tangent or cotangent.

From the figure of the last article,

by Euc. I. 47, OP2=OM2 + MP2 = 1+r2,

[merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small]

102. Given the value of the secant or cosecant of any angle, to draw the angle.

Let the given value be r, i.e. v : 1.

[merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small]

Therefore an angle has been drawn whose secant or whose cosecant has the given value r.

Q. E. F.

103. Given the value of the secant or cosecant of any angle, to find the other ratios.

In other words: To express the other ratios in terms of the

secant or cosecant.

From the figure of the last article, by Euc. I. 47,

MP2 = OP2 - OM2 = r2 – 1,

.. MP=√(-1).

[blocks in formation]

(ii) Suppose r = cosec A, so that MPO = A.

[blocks in formation]

sec A

OM

1

sin Asin MPO =

=

=

OP r

cosec A'

and so for the other ratios.

104. The results of Arts. 99, 101, 103, may also be obtained, without drawing a figure, from the general relations of equality established in the preceding chapter.

Example 1. To express the tangent in terms of the cosecant.

[blocks in formation]

Example 2. To express the sine in terms of the tangent.

[blocks in formation]

105. Other problems may be solved in a somewhat similar way. It is left to the student to prove the results of the follow

ing examples.

Example 1.

To divide any angle AOB into two angles whose

secants shall have a given ratio.

Cut off OA and OB, so that OA : OB= given ratio.

Join AB and draw OC perpendicular to AB.

OC shall divide AOB (internally or externally) as required.

Example 2. To divide any angle AOB into two angles whose tangents shall have a given ratio.

Let CD DE= given ratio. Place CD and DE in a straight line. Upon CE describe a segment CFE of a circle containing an angle equal to AOB. Draw DF at right-angles to CE cutting the circumference in F.

DF shall divide CFE, which is equal to AOB, as required.

Example 3. To divide any angle AOB into two angles whose sines shall have a given ratio.

Produce 40 to A': and cut off OA′ and OB so that OB : OA'= given ratio. Draw OC parallel to A'B.

OC shall divide AOB as required.

§ 2. THE ANGLE BEING GIVEN.

106. We now proceed to find the ratios of such angles as have simple geometrical relations by a method similar to the above. It is convenient to take the smallest line in our figure as the unit of length, in order to avoid unnecessary fractions. A second side is then found by some proposition connected with the particular angle in question. Lastly, a third side is always found by Euc. I. 47.

The student should in each case retain the figure with the values of its sides and angles marked, and not try at first to remember the ratios themselves.

107.

The ratios of the half right-angle. [45°, 50%, 7]

Draw AC, AB equal and at rightangles to one another. Join BC.

Or briefly: Construct a right-angled isosceles triangle.

[blocks in formation]

4

[ocr errors]

1

[Euc. I. 32.

[blocks in formation]
[blocks in formation]

Since 45° is its own complement, any ratio of 45° is the same

as its co-ratio.

108. The ratios of and of a right-angle.

[merged small][merged small][merged small][merged small][ocr errors]

On AB as base describe an equilateral triangle ABC, and bisect the angle ACB by CD..

Or briefly: Construct a bisected equilateral triangle.
Then ABC being equilateral is also equiangular.

.. each of its angles= } of 2 right-angles = 60°,

[Euc. I. 5. [Euc. I. 32.

« ForrigeFortsett »