Sidebilder
PDF
ePub

152. In the formulæ of the two preceding articles, it is convenient to abbreviate by writing

a+b+c= 2s, so that a + b − c = 28 - 2c, and so on.

[merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][subsumed][ocr errors][merged small][subsumed][merged small]
[ocr errors]

C

((8-a) (8-b))

[ocr errors]

b)

{(8 - a) (8-6)).

[ocr errors]

Since ab sin C = area of triangle = S (say),

[blocks in formation]

ab

153. To prove the sum-and-difference formula:

[blocks in formation]

Assume that A is greater than B; and therefore a greater than b.

[blocks in formation]

With centre C and radius CA describe a semi-circle cutting BC in D and BC produced in E.

angle ACE at centre

.. angle ADE at circumference =

= }} (A + B),

.. angle DAB=ADE-ABD = } (A + B) − B = }} (A — B). Also angle DAE in a semi-circle is a right-angle.

Draw DF parallel to AE, or at right-angles to DA.

tan

=

=

(AB) tan DAF DF AE DF tan (A+B) tan ADE AD AD AE

[blocks in formation]

=

by similar triangles,

BC-DC

BC+CE

[blocks in formation]

154. The student should observe that each of the identities connecting the sides and angles of a triangle (except the double-cosine formula) involves four out of the six elements A, B, C, a, b, c, two of the four being sides.

Thus by means of these identities we can find all the elements of a triangle when three, including a side, are given. [Compare Art. 29.1

In fact, since A+B+C = 180°, we have no more specific information about any particular triangle, when 3 angles are given, than when 2 angles are given. Hence a side must always

be one of the elements given.

155. The formulæ above given may be thus classified. Class I. Involving three angles.

A+B+C=180°.

Class II. Involving three sides and two angles.

a = b cos C + c cos B.

Class III. Involving two sides and the two opposite angles.

[blocks in formation]

Class IV. Involving two sides, the included angle and another

[merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][ocr errors][merged small][merged small][merged small][ocr errors][subsumed][merged small][merged small]

156. The substitution of d sin A, d sin B, d sin C for a, b, c respectively is often useful in the working of examples on Tri

[blocks in formation]
[blocks in formation]

=

=

2 sin (B-C) cos(B+C) tan (B-C)
2 sin (B+C) cos(B-C) tan (B+C)*
Show that tan B : tan C=a2+b2 − c2 : a2 − b2+c2,

sin B cos C
sin C cos B

Example 3.

We have

bcos C
c cos B

[blocks in formation]

Show that 8 cos A cos B cos C is never greater than 1.

2 cos A cos B=cos (A+B)+cos (A – B).

Keeping A+B (and, therefore, C) constant, this has its greatest value, when cos (AB)=1, i.e. when A=B. Hence the given expression has its greatest value, when A=B=C=60°, i.e. when

8 cos A cos B cos C=1.

EXAMPLES VI. B.

If A, B, C are the angles of a triangle, prove the following statements:

1. sin (A+B+C) = cos (A + B + C) = 0.

− cos (A + B + C) = sin 1⁄2 (A + B + C) = 1.

2.

[merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small]

4.

tan A+ tan B = sin C. sec A. sec B.

5. tan A+ tan B + tan C = tan A. tan B. tan C.

6.

sin A + sin B – sin C = 4 sin † A . sin B. cos C.

7.: :cos A + cos B

8. cos A+ cos B

9.

[blocks in formation]

cos C = 4 cos A. cos B. sin C - 1.

sin 24+ sin 2B + sin 2C 4 sin A. sin B. sin C.

=

[merged small][merged small][ocr errors][merged small][ocr errors][merged small][merged small][merged small][merged small]

13.

tan B. tan

14.

15.

4 cos A. cos B. cos C-1.

cos2 A + cos2 1⁄2 B - cos2 1 C = 2 cos

C
cot tan
2

[ocr errors]

A. cos B. sin § C.

C + tan 1⁄2 C . tan A + tan § A . tan 1⁄2 B = 1. sin2 A = cos2 B + cos2 C + 2 cos A. cos B. cos C.

cos2 A + cos2 B+ 2 cos A cos B cos C

A B
2

=

sin2 A + sin2 B - 2 sin A sin B cos C.

16.

8 sin A. sin B. sin

C is never greater than 1.

In any triangle ABC prove the following statements :

[blocks in formation]

+ b) cos C + (b + c) cos A + (c + a) cos B = a + b + c.
- c cos B) = b2 – c2.

a (b cos C

a sin2 B = b (cos A cos B + cos C').

a2 + b2 + c2:

2ab cos C + 2bc cos A + 2ca cos B.

=

24.

25.

26.

27.

ab sin2 C = c(a cos B cos C + b cos C cos A + c cos A cos B).

4S a (2b sin B cos A+ a sin 2B).

26 (1 - sin B cos A cosec C) = a sin 2B cosec C.

2 cos C (a sin A - b sin B) = c (sin 2B - sin 2A).
bc cos A+ ca cos B + 2ab cos C = a2 + b2.

[blocks in formation]

(b2 – c2) cos A + (c2 — a2) cos B + (a2 — b2) cos C

= a cos A (b −c) + b cos B (c − a) + c cos C (a + b).

c2)

=2abc (cos2 4 + cos2 B+ cos2 C).

2ab sin2 1⁄2 A + 2bc sin2 + B + 2ca sin2 C.

[blocks in formation]

If C is a right angle, prove the following statements:-(41—50)

[merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small]

51. If any one of the above equations (41-50) holds, examine in each case whether C is a right angle.

52. If, in any triangle ABC, d, e, f are the distances of the angles from the middle points of the opposite sides,

53.

4 (ď2 + e2 + ƒ2) = 3 (a2 + b2 + c2).

If l, m, n are the perpendiculars from A, B, C on the opposite sides,

2 (l cos A+m cos B+ n cos C) = a sin A + b sin B + c sin C. 54. If BC be bisected in D and produced to E, cot A is the Arithmetic Mean between cot DAC and cot ACE.

55. If D be the middle point of BC, H the point where the bisector of A cuts BC, L the foot of the perpendicular from A on BC; then

4DH. DL = (b~ c)2.

« ForrigeFortsett »