Vita Mathematica: Historical Research and Integration with TeachingVita Mathematica will enable teachers to learn the relevant history of various topics in the undergraduate curriculum and help them incorporate this history in their teaching. It contains articles dealing not only with calculus, but also with algebra, combinatorics, graph theory, and geometry, as well as more general articles on teaching courses for prospective teachers, and describes courses taught entirely using original sources. Judith Grabiner shows us how two important eighteenth century mathematicians, Colin Maclaurin and Joseph-Louis Lagrange, understood the calculus from these different standpoints and how their legacy is still important in teaching calculus today. We learn from Hans Nils Jahnke why Lagrange's algebraic approach dominated teaching in Germany in the nineteenth century. Wilbur Knorr traces the ancient history of one of the possible foundations, the concept of indivisibles. This volume demonstrates that the history of mathematics is no longer tangential to the mathematics curriculum, but in fact deserves a central role. |
Inni boken
Resultat 1-5 av 8
Side 145
Beklager, innholdet på denne siden er tilgangsbegrenset..
Beklager, innholdet på denne siden er tilgangsbegrenset..
Side 153
Beklager, innholdet på denne siden er tilgangsbegrenset..
Beklager, innholdet på denne siden er tilgangsbegrenset..
Side 179
Beklager, innholdet på denne siden er tilgangsbegrenset..
Beklager, innholdet på denne siden er tilgangsbegrenset..
Side 180
Beklager, innholdet på denne siden er tilgangsbegrenset..
Beklager, innholdet på denne siden er tilgangsbegrenset..
Side 181
Beklager, innholdet på denne siden er tilgangsbegrenset..
Beklager, innholdet på denne siden er tilgangsbegrenset..
Hva folk mener - Skriv en omtale
Vi har ikke funnet noen omtaler på noen av de vanlige stedene.
Innhold
Two Dialogues Gavin Hitchcock | 27 |
From the Scientific Revolution to the Present | 113 |
Judith Grabiner | 131 |
The Role of the National Science Foundation in the Rise of Theoretical Computer | 209 |
An Explanation Ubiratan DAmbrosio | 245 |
The Necessity of History in Teaching Mathematics V Frederick Rickey | 251 |
Teaching with Original Sources | 257 |
Measuring an Arc of Meridian Marie Françoise Jozeau and Michele Grégoire | 269 |
African Origins of False Position Solutions | 279 |
Origins and Teaching of Calculus | 301 |
Barrows Theorem Martin Flashman | 309 |
The History of the Concept of Function and Some Implications for Classroom Teaching | 317 |
How Many People Ever Lived? James Tattersall | 331 |
Notes on Contributors | 339 |
345 | |
Vanlige uttrykk og setninger
algebraic analysis ancient appears applied approach Archimedes base beginning Berlin calculus called Cambridge century Chinese circle College complex concept considered construction continued course cultural curve determine differential discussion early Elements engineering equal equations example expressed field Figure finite Foundation four functions geometric Getaldić give given Greek history of mathematics ideas important included Institute integrals interest John knowledge known Lagrange later math mathematicians means measure method models namely nature original Paris Philosophical position possible practical present Press problem proof published pupils question References root rule scientific seminar shows sides solution solve square teachers teaching techniques theorem theory thought tion tradition translation understanding University volume Weierstrass York