## Elements of Algebra |

### Hva folk mener - Skriv en omtale

Vi har ikke funnet noen omtaler på noen av de vanlige stedene.

### Innhold

57 | |

79 | |

86 | |

92 | |

103 | |

116 | |

127 | |

133 | |

202 | |

209 | |

215 | |

221 | |

227 | |

233 | |

239 | |

254 | |

139 | |

150 | |

159 | |

165 | |

171 | |

177 | |

182 | |

188 | |

194 | |

### Andre utgaver - Vis alle

Elements of Algebra: Translated from the French of M. Bourdon; Revised and ... Charles Davies Ingen forhåndsvisning tilgjengelig - 2017 |

Elements of Algebra: Translated From the French of M. Bourdon; Revised and ... Charles Davies Ingen forhåndsvisning tilgjengelig - 2015 |

### Vanlige uttrykk og setninger

a-Ha affected algebraic quantities arithmetical arithmetical means arrangements binomial called co-efficient common difference common factor consequently contain continued fraction contrary signs cube root decimal deduce denominator denote determine divide dividend division entire number enunciation equa equal equation becomes equation involving example extract the square figure find the values follows formula fourth fraction given number gives greatest common divisor Hence inequality last term least common multiple less letters taken logarithm manner method monomial multiplicand multiplied number of terms obtain operation perfect square positive roots preceding problem progression proportion proposed equation proposed polynomials quotient real root reduced remainder required root resolved result rule satisfy second degree second member second term square root substituted subtract suppose take the equation tens third tion total number transformation transposing units unity unknown quantity whence whole number

### Populære avsnitt

Side 181 - C' then A is said to have the same ratio to B that C has to D ; or, the ratio of A to B is equal to the ratio of C to D.

Side 183 - D, we have — =— , (Art. 169) ; nj\ and by clearing the equation of fractions, we have BC=AD; that is, of four proportional quantities, the product of the two extremes is equal to the product of the two means.

Side 122 - These expressions may sometimes be simplified, upon the principle that, the square root of the product of two or more factors is equal to the product of the square roots of these factors; or, in algebraic language, V'abed . . . = i/a.

Side 181 - To express that the ratio of A to B is equal to the ratio of C to D, we write the quantities thus : A : B : : C : D ; and read, A is to B as C to D.

Side 114 - ... the entire part of the root sought. For example, if it were required to extract the square root of 665, we should find 25 for the entire part of the root, and a remainder of 40, which shows that 665 is not a perfect square. But is the square of 25 the greatest perfect square contained in 665 ? that is, is 25 the entire part of the root ? To prove this, we will first show that, the difference between the squares of two consecutive numbers, is equal to twice the less number augmented by unity.

Side 28 - Multiply each term of the multiplicand by each term of the multiplier, and add the partial products.

Side 33 - The square of the sum of two quantities is equal to the square of the first, plus twice the product of the first and second, plus the square of the second.

Side 267 - The logarithm of a number is the exponent of the power to which it is necessary to raise a fixed number, in order to produce the first number.

Side 146 - B, departed from different places at the same time, and travelled towards each other. On meeting, it appeared that A had travelled 18 miles more than B ; and that A could have gone B's journey in 15| days, but B would have been 28 days in performing A's journey. How far did each travel ? Ans.

Side 90 - If A and B together can perform a piece of work in 8 days, A and c together in 9 days, and B and c in 10 days, how many days will it take each person to perform the same work alone.