An Elementary Treatise on Geometry: Simplified for Beginners Not Versed in Algebra. Part I, Containing Plane Geometry, with Its Application to the Solution of Problems, Del 1

Forside
Carter, Hendee, 1834 - 190 sider

Inni boken

Hva folk mener - Skriv en omtale

Vi har ikke funnet noen omtaler på noen av de vanlige stedene.

Utvalgte sider

Andre utgaver - Vis alle

Vanlige uttrykk og setninger

Populære avsnitt

Side 78 - If two triangles have two sides of the one equal to two sides of the other, each to each, but the...
Side 2 - District Clerk's Office. BE IT REMEMBERED, That on the seventh day of May, AD 1828, in the fifty-second year of the Independence of the UNITED STATES OF AMERICA, SG Goodrich, of the said District, has deposited in this office the...
Side 136 - The circumference of every circle is supposed to be divided into 360 equal parts, called degrees ; each degree into 60 equal parts, called minutes ; and each minute into 60 equal parts, called seconds.
Side 154 - Upon a given straight line to describe a segment of a circle, which shall contain an angle equal to a given rectilineal angle.
Side 138 - The perimeters of two regular polygons of the same number of sides, are to each other as their homologous sides, and their areas are to each other as the squares of those sides (Prop.
Side 116 - The side of a regular hexagon inscribed in a circle is equal to the radius of the circle.
Side 101 - Now, since the areas of similar polygons are to each other as the squares of their homologous sides...
Side 127 - The areas of two regular polygons of the same number of sides are to each other as the squares of their radii, or as the squares of their apothems.
Side 154 - A, with a radius equal to the sum of the radii of the given circles, describe a circle.
Side 137 - P is at the center of the circle. II. 18. The sum of the arcs subtending the vertical angles made by any two chords that intersect, is the same, as long as the angle of intersection is the same. 19. From a point without a circle two straight lines are drawn cutting the convex and concave circumferences, and also respectively parallel to two radii of the circle. Prove that the difference of the concave and convex arcs intercepted by the cutting lines, is equal to twice the arc intercepted by the radii.

Bibliografisk informasjon