Sidebilder
PDF
ePub

THEOREM VII.

126. In an isosceles triangle the angles opposite the equal sides are equal.

B'

B

A

C

HYPOTHESIS. ABC a triangle, with AB = BC.
CONCLUSION. X A = X C.

A

PROOF. Imagine the triangle ABC to be taken up, turned over, and put down in a reversed position; and now designate the angular points A' (read A prime), B′, C', to distinguish the triangle from its trace ABC left behind.

Then, in the triangles ABC, C'B'A',

AB C'B' and BC
and BC= B'A',

[merged small][merged small][merged small][ocr errors][merged small]

(124. Triangles are congruent if two sides and the included angle are equal in each.)

[merged small][ocr errors][merged small][merged small]

(87. Things equal to the same thing are equal to one another.)

127. COROLLARY. Every equilateral triangle is also equiangular.

EXERCISES. 2. The bisectors of vertical angles are in the same line.

THEOREM VIII.

128. Two triangles are congruent if two angles and the included side in the one are equal respectively to two angles and the included side in the other.

[merged small][merged small][merged small][merged small][ocr errors]

HYPOTHESIS. ABC and LMN two triangles, with A = L, ¥ C = 4 N, AC LN.

CONCLUSION. The two triangles are congruent.

Δ ▲ ABC ≈ A LMN.

PROOF. Apply the triangle LMN to the triangle ABC so that the point I shall rest upon A, and the side LN lie along the side AC, and the point M lie on the same side of AC as B.

Then, because the side AC = LN,

.. point N will rest upon point C.

Because XL = X A,

:. side LM will rest upon the line AB.

Because N = C,

.. side NM will rest upon the line CB.

Because the sides LM and NM rest respectively upon the lines AB and CB,

..

the vertex M, resting upon both the lines AB and CB, must rest upon the vertex B, the only point common to the two lines.

Therefore the triangles coincide in all their parts, and are congruent.

THEOREM IX.

129. Two triangles are congruent if the three sides of the one are equal respectively to the three sides of the other.

[blocks in formation]

HYPOTHESIS. Triangles ABC and LMN, having AB = LM, MN, and CA = NL.

BC =

CONCLUSION. Δ ABC Ξ Δ IMN.

PROOF. Imagine ▲ ABC to be applied to ▲ LMN in such a way that LN coincides with AC, and the vertex M falls on the side of AC opposite to the side on which B falls, and join BM.

[blocks in formation]

Then in ▲ ABM, because, by hypothesis, AB = AM,

× ABM = × AMB.

(126. In an isosceles triangle the angles opposite the equal sides are equal.)

And for the same reason, in ▲ BCM, because BC

[merged small][ocr errors]

CM,

Therefore ABM + CBM = X AMB + CMB;

[ocr errors]
[ocr errors]

(88. If equals be added to equals, the sums are equal.)

[blocks in formation]

(124. Triangles are congruent if two sides and the included angle are equal in each.)

CASE II. When BM passes through one extremity of the

[blocks in formation]

CASE III. When BM falls beyond the extremity of the sect AC.

[merged small][merged small][merged small][ocr errors][merged small]
[ocr errors][ocr errors]

Then in ▲ ABM, because, by hypothesis, AB = AM,

And in a BCM, because BC= CM,

× ABM =

X AMB.

[merged small][ocr errors][merged small][merged small][ocr errors][merged small]

(89. If equals be taken from equals, the remainders are equal.)

and so, as in Case I., ▲ ABC ≈ ▲ LMN.

CHAPTER IV.

PROBLEMS.

130. A Problem is a proposition in which something is required to be done by a process of construction, which is termed the Solution.

131. The solution of a problem in elementary geometry consists,

(1) In indicating how the ruler and compasses are to be used in effecting the construction required.

(2) In proving that the construction so given is correct.

(3) In discussing the limitations, which sometimes exist, within which alone the solution is possible.

PROBLEM I.

132. To describe an equilateral triangle upon a given sect.

[merged small][merged small][merged small][ocr errors][merged small][merged small]

REQUIRED, to describe an equilateral triangle on AB.

« ForrigeFortsett »