Sidebilder
PDF
ePub
[blocks in formation]

It will be seen that the four proximates are respectively obverse to the four ultimates, and that the mediates form three pairs of obverses. Every proximate or ultimate is distant 1 and 3 respectively from such a pair of mediates. Aided by this system of nomenclature Professor Clifford proceeds to an exhaustive enumeration of types, in which it is impossible to follow him. The results are as follows:I-fold statements

[merged small][ocr errors][ocr errors][merged small][merged small]

I type\ 4 types

[merged small][merged small][ocr errors][merged small]
[ocr errors]
[ocr errors]
[merged small][ocr errors]
[ocr errors][ocr errors]
[merged small][ocr errors]
[merged small][ocr errors][merged small][merged small][ocr errors][merged small][merged small]

Now as each seven-fold or less-than-seven-fold statement is complementary to a nine-fold or more-than-nine-fold statement, it follows that the complete number of types will be 159 x 2 + 78 = 396.

It appears then that the types of statement concerning four classes are only about 26 times as numerous as those concerning three classes, fifteen in number, although the number of possible combinations is 256 times as great.

Professor Clifford informs me that the knowledge of the possible groupings of subdivisions of classes which he obtained by this inquiry has been of service to him in some applications of hyper-elliptic functions to which he has subsequently been led. Professor Cayley has since expressed his opinion that this line of investigation should be followed out, owing to the bearing of the theory of compound combinations upon the higher geometry.1 It seems likely that many unexpected points of connection

1 Proceedings of the Manchester Literary and Philosophical Society, 6th February, 1877, vol. xvi., p. 113.

L

will in time be disclosed between the sciences of logic and mathematics.

Distinction between Perfect and Imperfect Induction.

We cannot proceed with advantage before noticing the extreme difference which exists between cases of perfect and those of imperfect induction. We call an induction perfect when all the objects or events which can possibly come under the class treated have been examined. But in the majority of cases it is impossible to collect together, or in any way to investigate, the properties of all portions of a substance or of all the individuals of a race. The number of objects would often be practically infinite, and the greater part of them might be beyond our reach, in the interior of the earth, or in the most distant parts of the Universe. In all such cases induction is imperfect, and is affected by more or less uncertainty. As some writers have fallen into much error concerning the functions and relative importance of these two branches of reasoning, I shall have to point out that

1. Perfect Induction is a process absolutely requisite, both in the performance of imperfect induction and in the treatment of large bodies of facts of which our knowledge is complete.

2. Imperfect Induction is founded on Perfect Induction, but involves another process of inference of a widely different character.

It is certain that if I can draw any inference at all concerning objects not examined, it must be done on the data afforded by the objects which have been examined. If I judge that a distant star obeys the law of gravity, it must be because all other material objects sufficiently known to me obey that law. If I venture to assert that all ruminant animals have cloven hoofs, it is because all ruminant animals which have come under my notice have cloven hoofs. On the other hand, I cannot safely say that all cryptogamous plants possess a purely cellular structure, because some cryptogamous plants, which have been examined by botanists, have a partially vascular structure. The probability that a new cryptogam will be cellular only can be estimated, if at all, on the ground of

the comparative numbers of known cryptogams which are and are not cellular. Thus the first step in every induction will consist in accurately summing up the number of instances of a particular phenomenon which have fallen under our observation. Adams and Leverrier, for instance, must have inferred that the undiscovered planet Neptune would obey Bode's law, because all the planets known at that time obeyed it. On what principles the passage from the known to the apparently unknown is warranted, must be carefully discussed in the next section, and in various parts of this work.

It would be a great mistake, however, to suppose that Perfect Induction is in itself useless. Even when the enumeration of objects belonging to any class is complete, and admits of no inference to unexamined objects, the statement of our knowledge in a general proposition is a process of so much importance that we may consider it necessary. In many cases we may render our investigations exhaustive; all the teeth or bones of an animal; all the cells in a minute vegetable organ; all the caves in a mountain side; all the strata in a geological section; all the coins in a newly found hoard, may be so completely scrutinized that we may make some general assertion concerning them without fear of mistake. Every bone might be proved to contain phosphate of lime; every cell to enclose a nucleus; every cave to hide remains of extinct animals; every stratum to exhibit signs of marine origin; every coin to be of Roman manufacture. These are cases where our investigation is limited to a definite portion of matter, or a definite area on the earth's surface.

There is another class of cases where induction is naturally and necessarily limited to a definite number of alternatives. Of the regular solids we can say without the least doubt that no one has more than twenty faces, thirty edges, and twenty corners; for by the principles of geometry we learn that there cannot exist more than five regular solids, of each of which we easily observe that the above statements are true. In the theory of numbers, an endless variety of perfect inductions might be made; we can show that no number less than sixty possesses so many divisors, and the like is true of 360; for it does not require a great amount of labour to ascertain and count all the divisors

of numbers up to sixty or 360. I can assert that between 60,041 and 60,077 no prime number occurs, because the exhaustive examination of those who have constructed tables of prime numbers proves it to be so.

In matters of human appointment or history, we can frequently have a complete limitation of the number of instances to be included in an induction. We might show that the propositions of the third book of Euclid treat only of circles; that no part of the works of Galen mentions the fourth figure of the syllogism; that none of the other kings of England reigned so long as George III.; that Magna Charta has not been repealed by any subsequent statute; that the price of corn in England has never been so high since 1847 as it was in that year; that the price of the English funds has never been lower than it was on the 23rd of January, 1798, when it fell to 471.

It has been urged against this process of Perfect Induction that it gives no new information, and is merely a summing up in a brief form of a multitude of particulars. But mere abbreviation of mental labour is one of the most important aids we can enjoy in the acquisition of knowledge. The powers of the human mind are so limited that multiplicity of detail is alone sufficient to prevent its progress in many directions. Thought would be practically impossible if every separate fact had to be separately thought and treated. Economy of mental power may be considered one of the main conditions on which our elevated intellectual position depends. Mathematical processes are for the most part but abbreviations of the simpler acts of addition and subtraction. The invention of logarithms was one of the most striking additions ever made to human power: yet it was a mere abbreviation of operations which could have been done before had a sufficient amount of labour been available. Similar additions to our power will, it is hoped, be made from time to time; for the number of mathematical problems hitherto solved is but an indefinitely small fraction of those which await solution, because the labour they have hitherto demanded renders them impracticable. So it is throughout all regions of thought. The amount of our knowledge depends upon our power of bringing it within practicable compass. Unless we arrange and classify facts and condense them into general truths, they

soon surpass our powers of memory, and serve but to confuse. Hence Perfect Induction, even as a process of abbreviation, is absolutely essential to any high degree of mental achievement.

Transition from Perfect to Imperfect Induction.

It is a question of profound difficulty on what grounds we are warranted in inferring the future from the present, or the nature of undiscovered objects from those which we have examined with our senses. We pass from Perfect to Imperfect Induction when once we allow our conclusion to apply, at all events apparently, beyond the data on which it was founded. In making such a step we seem to gain a net addition to our knowledge; for we learn the nature of what was unknown. We reap where we have never sown. We appear to possess the divine power of creating knowledge, and reaching with our mental arms far beyond the sphere of our own observation. I shall have, indeed, to point out certain methods of reasoning in which we do pass altogether beyond the sphere of the senses, and acquire accurate knowledge which observation could never have given; but it is not imperfect induction that accomplishes such a task. Of imperfect induction itself, I venture to assert that it never makes any real addition to our knowledge, in the meaning of the expression sometimes accepted. As in other cases of inference, it merely unfolds the information contained in past observations; it merely renders explicit what was implicit in previous experience. It transmutes, but certainly does not create knowledge.

There is no fact which I shall more constantly keep before the reader's mind in the following pages than that the results of imperfect induction, however well authenticated and verified, are never more than probable. We never can be sure that the future will be as the present. We hang ever upon the will of the Creator: and it is only so far as He has created two things alike, or maintains the framework of the world unchanged from moment to moment, that our most careful inferences can be fulfilled. All predictions, all inferences which reach beyond their data, are purely hypothetical, and proceed on the assump

« ForrigeFortsett »