Sidebilder
PDF
ePub

sources of error in the experimental processes. The strict method of procedure is to calculate the probable error of the mean of the observed results (p. 387), and then observe whether the theoretical result falls within the limits of probable error. If it does, and if the experimental results agree as well with theory as they agree with each other, then the probability of the theory is much increased, and we may employ the theory with more confidence in the anticipation of further results. The probable error, it should be remembered, gives a measure only of the effects of incidental and variable sources of error, but in no degree indicates the amount of fixed causes of error. Thus, if the mean results of two modes of determining a quantity are so far apart that the limits of probable error do not overlap, we may infer the existence of some overlooked source of fixed error in one or both modes. We will further consider in a subsequent section the discordance of measurements.

Quantities determined by Theory and verified by
Measurement.

One of the most satisfactory tests of a theory consists in its application not only to predict the nature of a phenomenon, and the circumstances in which it may be observed, but also to assign the precise quantity of the phenomenon. If we can subsequently apply accurate instruments and measure the amount of the phenomenon witnessed, we have an excellent opportunity of verifying or negativing the theory. It was in this manner that Newton first attempted to verify his theory of gravitation. He knew approximately the velocity produced in falling bodies at the earth's surface, and if the law of the inverse square of the distance held true, and the reputed distance of the moon was correct, he could infer that the moon ought to fall towards the earth at the rate of fifteen feet in one minute. Now, the actual divergence of the moon from the tangent of its orbit appeared to amount only to thirteen feet in one minute, and there was a discrepancy of two feet in fifteen, which caused Newton to lay "aside at that time any further thoughts of this matter." Many years afterwards, probably fifteen or sixteen years, Newton obtained more precise data from

which he could calculate the size of the moon's orbit, and he then found the discrepancy to be inconsiderable.

His theory of gravitation was thus verified as far as the moon was concerned; but this was to him only the beginning of a long course of deductive calculations, each ending in a verification. If the earth and moon attract each other, and also the sun and the earth, there is reason to expect that the sun and moon should attract each other. Newton followed out the consequences of this inference, and showed that the moon would not move as if attracted by the earth only, but sometimes faster and sometimes slower. Comparison with Flamsteed's observations of the moon showed that such was the case. Newton argued again, that as the waters of the ocean are not rigidly attached to the earth, they might attract the moon, and be attracted in return, independently of the rest of the earth. Certain daily motions resembling the tides would then be caused, and there were the tides to verify the reasoning. It was the extraordinary power with which Newton traced out geometrically the consequences of his theory, and submitted them to repeated comparison with experience, which constitutes his pre-eminence over all physicists.

Quantities determined by Theory and not verified.

It will continually happen that we are able, from certain measured phenomena and a correct theory, to determine the amount of some other phenomenon which we may either be unable to measure at all, or to measure with an accuracy corresponding to that required to verify the prediction. Thus Laplace having worked out a theory of the motions of Jupiter's satellites on the hypothesis of gravitation, found that these motions were greatly affected by the spheroidal form of Jupiter. The motions of the satellites can be observed with great accuracy owing to their frequent eclipses and transits, and from these motions. he was able to argue inversely, and assign the ellipticity of the planet. The ratio of the polar and equatorial axes thus determined was very nearly that of 13 to 14; and it agrees well with such direct micrometrical measurements of the planet as have been made; but Laplace believed that the theory gave a more accurate result than direct obser

vation could yield, so that the theory could hardly be said to admit of direct verification.

The specific heat of air was believed on the grounds of direct experiment to amount to o 2669, the specific heat of water being taken as unity; but the methods of experiment were open to considerable causes of error. Rankine showed in 1850 that it was possible to calculate from the mechanical equivalent of heat and other thermodynamic data, what this number should be, and he found it to be O'2378. This determination was at the time accepted as the most satisfactory result, although not verified; subsequently in 1853 Regnault obtained by direct experiment the number 02377, proving that the prediction had been well grounded.

It is readily seen that in quantitative questions verification is a matter of degree and probability. A less accurate method of measurement cannot verify the results of a more accurate method, so that if we arrive at a determination of the same physical quantity in several distinct modes it is often a delicate matter to decide which result is most reliable, and should be used for the indirect determination of other quantities. For instance, Joule's and Thomson's ingenious experiments upon the thermal phenomena of fluids in motion involved, as one physical constant, the mechanical equivalent of heat; if requisite, then, they might have been used to determine that important constant. But if more direct methods of experi ment give the mechanical equivalent of heat with superior accuracy, then the experiments on fluids will be turned to a better use in determining various quantities relating to the theory of fluids. We will further consider questions of this kind in succeeding sections.

There are of course many quantities assigned on theoretical grounds which we are quite unable to verify with corresponding accuracy. The thickness of a film of gold. leaf, the average depths of the oceans, the velocity of a star's approach to or regression from the earth as inferred from spectroscopic data (pp. 296-99), are cases in point; but many others might be quoted where direct verification seems impossible. Newton and subsequent physicists

1 Philosophical Transactions (1854), vol. cxliv. p. 364.

have measured light undulations, and by several methods we learn the velocity with which light travels. Since an undulation of the middle green is about five ten-millionths of a metre in length, and travels at the rate of nearly 300,000,000 of metres per second, it follows that about 600,000,000,000,000 undulations must strike in one second the retina of an eye which perceives such light. But how are we to verify such an astounding calculation. by directly counting pulses which recur six hundred billions of times in a second?

Discordance of Theory and Experiment.

When a distinct want of accordance is found to exist between the results of theory and direct measurement, interesting questions arise as to the mode in which we can account for this discordance. The ultimate explanation of the discrepancy may be accomplished in at least four ways as follows:

(1) The direct measurement may be erroneous owing to various sources of casual error.

(2) The theory may be correct as far as regards the general form of the supposed laws, but some of the constant numbers or other quantitative data employed in the theoretical calculations may be inaccurate.

(3) The theory may be false, in the sense that the forms of the mathematical equations assumed to express the laws of nature are incorrect.

(4) The theory and the involved quantities may be approximately accurate, but some regular unknown cause may have interfered, so that the divergence may be regarded as a residual effect representing possibly a new and interesting phenomenon.

No precise rules can be laid down as to the best mode of proceeding to explain the divergence, and the experimentalist will have to depend upon his own insight and knowledge; but the following recommendations may be made.

If the experimental measurements are not numerous, repeat them and take a more extensive mean result, the probable accuracy of which, as regards casual errors, will increase as the square root of the number of experiments. Supposing

that no considerable modification of the result is thus effected, we may suspect the existence of more deep-seated sources of error in our method of measurement. The next resource will be to change the size and form of the apparatus employed, and to introduce various modifications in the materials employed or the course of procedure, in the hope (p. 396) that some cause of constant error may thus be removed. If the inconsistency with theory still remains unreduced we may attempt to invent some widely different mode of arriving at the same physical quantity, so that we may be almost sure that the same cause of error will not affect both the new and old results. In some cases it is possible to find five or six essentially different modes of arriving at the same determination.

Supposing that the discrepancy still exists we may begin to suspect that our direct measurements are correct, and that the data employed in the theoretical calculations. are inaccurate. We must now review the grounds on which these data depend, consisting as they must ultimately do of direct measurements. A comparison of the recorded data will show the degree of probability attaching to the mean result employed; and if there is any ground for imagining the existence of error, we should repeat the observations, and vary the forms of experiment just as in the case of the previous direct measurements. The continued existence of the discrepancy must show that we have not attained to a complete acquaintance with the theory of the causes in action, but two different cases still remain. We may have misunderstood the action of those causes which we know to exist, or we may have overlooked the existence of one or more other causes. In the first case our hypothesis appears to be wrongly chosen and inapplicable; but whether we are to reject it will depend upon whether we can form another hypothesis which yields a more accurate accordance. The probability of an hypothesis, it will be remembered (p. 243), is to be judged, in the absence of à priori grounds of judgment, by the probability that if the supposed causes exist the observed result follows; but as there is now little probability of reconciling the original hypothesis with our direct measurements the field is open for new hypotheses, and any one which gives a closer accordance with measurement will so

« ForrigeFortsett »