Solid and Spherical Geometry and Conic Sections: Being a Treatise on the Higher Branches of Synthetical Geometry, Containing the Solid and Spherical Geometry of Playfair ... |
Inni boken
Side 48
Thus the plane CD meets the sphere only in the point B , and therefore touches it
. Cor . 1 . - A sphere and a plane can touch one another only in one point . Cor . 2
. - If a plane touch a sphere , the radius at the point of contact is perpendicular ...
Thus the plane CD meets the sphere only in the point B , and therefore touches it
. Cor . 1 . - A sphere and a plane can touch one another only in one point . Cor . 2
. - If a plane touch a sphere , the radius at the point of contact is perpendicular ...
Side 109
Any straight line , drawn from a point in the curve , parallel to the axis , and in the
same direction , is called a diameter ... is that part of a diameter which is inters
cepted by a tangent , and an ordinate to that diameter , from the point of contact .
Any straight line , drawn from a point in the curve , parallel to the axis , and in the
same direction , is called a diameter ... is that part of a diameter which is inters
cepted by a tangent , and an ordinate to that diameter , from the point of contact .
Side 113
At the same point , in the curve , there cannot . be more than one tangent . Cor . 3
. - A tangent bisects the angle formed by a straight : line drawn to the focus , and
another perpendicular to the directrix from the point of contact ; it also bisects ...
At the same point , in the curve , there cannot . be more than one tangent . Cor . 3
. - A tangent bisects the angle formed by a straight : line drawn to the focus , and
another perpendicular to the directrix from the point of contact ; it also bisects ...
Side 115
The square of that part of a tangent , between : the point of contact and any
diameter , is equal to the rectangle under the external segment of that diameter ,
and the parameter of the diameter which passes through the point of contact . For
RM ...
The square of that part of a tangent , between : the point of contact and any
diameter , is equal to the rectangle under the external segment of that diameter ,
and the parameter of the diameter which passes through the point of contact . For
RM ...
Side 116
Let the tangent GM meet any diameter VN in M , and let GN be an ordinate to it ,
from the point of contact , the subtangent MN is bisected in V ( figure to
proposition VII . ) For , let the diameter GL , and its semi - ordinate VL , be drawn ,
then is ...
Let the tangent GM meet any diameter VN in M , and let GN be an ordinate to it ,
from the point of contact , the subtangent MN is bisected in V ( figure to
proposition VII . ) For , let the diameter GL , and its semi - ordinate VL , be drawn ,
then is ...
Hva folk mener - Skriv en omtale
Vi har ikke funnet noen omtaler på noen av de vanlige stedene.
Andre utgaver - Vis alle
Solid and Spherical Geometry and Conic Sections: Being a Treatise on the ... A. Bell Uten tilgangsbegrensning - 1837 |
Solid and Spherical Geometry and Conic Sections: Being a Treatise on the ... William Chambers,Robert Chambers,A Bell Ingen forhåndsvisning tilgjengelig - 2018 |
Solid and Spherical Geometry and Conic Sections: Being a Treatise on the ... William Chambers,Robert Chambers,A Bell Ingen forhåndsvisning tilgjengelig - 2015 |
Vanlige uttrykk og setninger
ABCD affection altitude angle ABC axis base bisects called centre circle common section cone conjugate consequently contained cord cosine curve cylinder described diameter difference distance divided draw drawn ellipse equal extremities fall figure foci focus fore given given point greater half Hence hyperbola inclination intercepted intersection join less line be drawn lines drawn manner measure meet namely opposite ordinate parabola parallel parallelogram pass perpendicular perspective plane point of contact pole primitive prism produced projection proportional PROPOSITION proved pyramid quadrant radius ratio reason rectangle right angles segments semi-ordinate sides similar sine small circle solid sphere spherical triangle square straight line surface tangent THEOREM third transverse triangle vertex vertical
Populære avsnitt
Side 50 - If two triangles have two angles of the one equal to two angles of the other, each to each, and one side equal to one side, viz.
Side 15 - A cone is a solid figure described by the revolution of a right-angled triangle about one of the sides containing the right angle, which side remains fixed.
Side 25 - LR, the base of which is the parallelogram LQ, and of which LM is one of its insisting straight lines : therefore, because the parallelogram AB is equal to CD, as the base AB is to the base LQ, so is (7.
Side 17 - DAB, which contain the solid angle at A, are less than four right angles. Next, let the solid angle at A be contained by any number of plane angles BAC, CAD, DAE, EAF, FAB. These shall together be less than four right angles.
Side 27 - FC, as the solid HD to the solid DC. But the base HF is equal to the base AE, and the solid GK to the solid AB ; therefore, as the base AE to the base CF, so is the solid AB to the solid CD.
Side 53 - EM (2.) are ^quadrants, and FL, EM together, that is, FE and ML together, are equal to a semicircle. But since A is the pole of ML, ML is the measure of the angle BAC (3.), consequently FE is the supplement of the measure of the angle BAC.
Side 19 - And AB is parallel to CD ; therefore AC is a parallelogram. In like manner, it may be proved, that each of the figures CE, FG, GB, BF, AE is a parallelogram: Join AH, DF; and...
Side 5 - If two straight lines be at right angles to the same plane, they shall be parallel to one another. Let the straight lines AB, CD be at right angles to the same plane.
Side 9 - CA is at right angles to the given plane, it makes right angles with every straight line meeting it in that plane. But DAE, which is in that plane, meets CA : therefore CAE is a right angle. For the same reason BAE is a right angle. Wherefore the angle CAE is equal to the angle BAE ; and they are in one plane, which is impossible. Also, from a point above a plane, there can be but one perpendicular to that plane ; for if there could be two, they would be parallel (6.
Side 1 - The inclination of a straight line to a plane is the acute angle contained by that straight line, and another drawn from the point in which the first line meets the plane, to the point in which...