### Hva folk mener -Skriv en omtale

Vi har ikke funnet noen omtaler pċ noen av de vanlige stedene.

### Innhold

 FIRST SECTION GEOMETRY I Definitions 2 Theorems 8 Problems 15 SECOND SECTION LENGTHS IV Tables of Lineal Measure 23 Rightangled Triangle 24 Similar Figures 31 Chords of a Circle 37 VIII 45
 Wedge 159 Prismoid 164 Sphere 169 Zone and Segment of a Sphere 174 Irregular Solids 178 Similar Solids 180 FIFTH SECTION AREAS OF THE SURFACES OF SOLIDS XXXIII Plane Surfaces 185 Right Circular Cylinder 192

### Populĉre avsnitt

Side 4 - When a straight line standing on another straight line makes the adjacent angles equal to one another, each of the angles is called a right angle ; and the straight line which stands on the other is called a perpendicular to it.
Side 124 - A diameter of a circle is a straight line drawn through the centre, and terminated both ways by the circumference.
Side 17 - To draw a straight line through a given point parallel to a given straight line. Let A be the given point, and BC the given straight line : it is required to draw a straight line through the point A parallel to the straight line BC. In BC take any point g D, and join AD ; at the point A in the straight line AD, make the angle DAE equal to the angle
Side 74 - RULE. — From half the sum of the three sides, subtract each side separately; multiply the half -sum and the three remainders together; the square root of the product is the area.
Side 18 - To draw a straight line perpendicular to a given straight line of an unlimited length, from a given point without it. Let AB be the given straight line, which may be produced to any length both ways, and let c be a point without it.
Side 7 - A circle is a plane figure contained by one line, which is called the circumference, and is such that all straight lines drawn from a certain point within the figure to the circumference, are equal to one another.
Side 4 - Parallel straight lines are such as are in the same plane, and which being produced ever so far both ways, do not meet.
Side 272 - The content of a cistern is the sum of two cubes whose edges are 10 inches and 2 inches, and the area of its base is the difference of two squares whose sides are 1ż and If feet.
Side 155 - To the areas of the two ends of the frustum add the square root of their product ; multiply the sum by the height of the frustum ; and one-third of the product will be the volume.
Side 230 - Add into one sum 39 times the square of the bung diameter, 25 times the square of the head diameter, and 26 times the product of the...