## The first three books of Euclid's Elements of geometry, with theorems and problems, by T. Tate |

### Inni boken

Resultat 1-5 av 5

Side 33

С the same base BC , and between the same D E parallels BC , AE ; the

parallelogram ABCD is

ABC is equal ( 1. 37. ) to the triangle EBC , because they are upon the same base

BC , and ...

С the same base BC , and between the same D E parallels BC , AE ; the

parallelogram ABCD is

**double**of the triangle EBC . Join Ac ; then the triangleABC is equal ( 1. 37. ) to the triangle EBC , because they are upon the same base

BC , and ...

Side 47

to the square of AC , CE , because ACE is a right angle ; therefore , the square of

EA is

of Eg is equal to the square of GF ; therefore , the squares of EG , GF are ...

to the square of AC , CE , because ACE is a right angle ; therefore , the square of

EA is

**double**of the square of AC : Again , because EG is equal to GF , the squareof Eg is equal to the square of GF ; therefore , the squares of EG , GF are ...

Side 48

And because Ec is equal to ca , the square of Ec is equal to the square of CA ;

therefore the squares of EC , CA are

of E A is equal ( 1. 47. ) to the squares of EC , CA ; therefore the square of EA is ...

And because Ec is equal to ca , the square of Ec is equal to the square of CA ;

therefore the squares of EC , CA are

**double**of the square of CA : But the squareof E A is equal ( 1. 47. ) to the squares of EC , CA ; therefore the square of EA is ...

Side 65

Next , if the straight lines A B , CD be equally distant from the centre , that is , if FE

be equal to EG ; AB is equal to CD : For , the same construction being made , it

may , as before , be demonstrated , that AB is

...

Next , if the straight lines A B , CD be equally distant from the centre , that is , if FE

be equal to EG ; AB is equal to CD : For , the same construction being made , it

may , as before , be demonstrated , that AB is

**double**of A F , and cd**double**of cG...

Side 69

XX . THEOR . The angle at the centre of the circle is

circumference , upon the same base , that is , upon the same part of the

circumference . Let ABC be a circle , and BEC an angle at the centre , and BAC

an angle at ...

XX . THEOR . The angle at the centre of the circle is

**double**of the angle at thecircumference , upon the same base , that is , upon the same part of the

circumference . Let ABC be a circle , and BEC an angle at the centre , and BAC

an angle at ...

### Hva folk mener - Skriv en omtale

Vi har ikke funnet noen omtaler på noen av de vanlige stedene.

### Andre utgaver - Vis alle

The first three books of Euclid's Elements of geometry, with theorems and ... Euclides Uten tilgangsbegrensning - 1851 |

The First Three Books of Euclid's Elements of Geometry from the Text of Dr ... Euclid,Thomas Tate Ingen forhåndsvisning tilgjengelig - 2014 |

The First Three Books of Euclid's Elements of Geometry from the Text of Dr ... Euclid,Thomas Tate Ingen forhåndsvisning tilgjengelig - 2014 |

### Vanlige uttrykk og setninger

ABCD alternate angle ABC angle ACB angle BAC angle equal base BC BC is equal bisect centre circle ABC circumference coincide common construct demonstrated describe diameter divided double draw equal angles equal to FB equilateral exterior angle extremity figure fore four given point given straight line gnomon greater impossible interior isosceles triangle join less Let ABC likewise line be drawn meet opposite angles opposite sides parallel parallelogram pass perpendicular PROB produced PROP Q. E. D. PROP rectangle contained remaining angle right angles segment semicircle shown sides squares of AC straight line AC Take taken THEOR third touch touches the circle triangle ABC twice the rectangle vertex wherefore whole

### Populære avsnitt

Side 6 - If a straight line meets two straight lines, so as to make the two interior angles on the same side of it taken together less than two right angles...

Side 5 - Let it be granted that a straight line may be drawn from any one point to any other point.

Side 20 - If two triangles have two sides of the one equal to two sides of the...

Side 30 - Parallelograms upon equal bases, and between the same parallels, are equal to one another.

Side 17 - Any two angles of a triangle are together less than two right angles. Let ABC be any triangle ; any two of its angles together are less than two right angles.

Side 84 - IF from a point without a circle there be drawn two straight lines, one of which cuts the circle, and the other meets it; if the rectangle contained by the whole line which cuts the circle, and the part of it without the circle, be equal to the square of the line which meets it, the line which meets it shall touch the circle.

Side 82 - If from any point without a circle two straight lines be drawn, one of -which cuts the circle, and the other touches it; the rectangle contained by the whole line which cuts the circle, and the part of it without the circle, shall be equal to the square of the line which touches it.

Side 11 - UPON the same base, and on the same side of it, there cannot be two triangles that have their sides which are terminated in one extremity of the base equal to one another, and likewise those which are terminated in the other extremity.

Side 19 - To make a triangle of which the sides shall be equal to three given straight lines, but any two whatever of these must be greater than the third, (i.

Side 7 - From the greater of two given straight lines to cut off a part equal to the less. Let AB and C be the two given straight lines, whereof AB is the greater.