## The first three books of Euclid's Elements of geometry, with theorems and problems, by T. Tate |

### Inni boken

Resultat 1-5 av 23

Side 37

therefore each of the opposite angles A BE , BED is a right angle ; wherefore the figure ADE B is

therefore each of the opposite angles A BE , BED is a right angle ; wherefore the figure ADE B is

**rectangular**... the side subtending the right angle , is equal to the squares described upon the sides which**contain**the right angle . Side 39

If there be two straight lines , one of which divided into any number of parts ; the

If there be two straight lines , one of which divided into any number of parts ; the

**rectangle contained**by the two straight lines , is equal to the**rectangles contained**by the undivided line , and the several parts of the divided line ... Side 40

L A into any parts in the points D , E ; the

L A into any parts in the points D , E ; the

**rectangle contained**by the straight lines A , BC is equal to the B D E С**rectangle contained**by A , BD , together with that contained by A , DE , and that contained by A , EC . Side 41

If a straight line be divided into any two parts , the

If a straight line be divided into any two parts , the

**rectangle contained**by the whole and one of the parts is equal with the**rectangle contained**by the two parts , together with the square of the aforesaid part . Side 42

also to Gk , and cg to BK ; wherefore the H K figure cgKB is equilateral : It is likewise rectangular ; for cg is parallel to BK ... to the complement GE , and that AG is the

also to Gk , and cg to BK ; wherefore the H K figure cgKB is equilateral : It is likewise rectangular ; for cg is parallel to BK ... to the complement GE , and that AG is the

**rectangle contained**by AC , CB , for gc is equal to CB ...### Hva folk mener - Skriv en omtale

Vi har ikke funnet noen omtaler på noen av de vanlige stedene.

### Andre utgaver - Vis alle

The first three books of Euclid's Elements of geometry, with theorems and ... Euclides Uten tilgangsbegrensning - 1851 |

The First Three Books of Euclid's Elements of Geometry from the Text of Dr ... Euclid,Thomas Tate Ingen forhåndsvisning tilgjengelig - 2014 |

The First Three Books of Euclid's Elements of Geometry from the Text of Dr ... Euclid,Thomas Tate Ingen forhåndsvisning tilgjengelig - 2014 |

### Vanlige uttrykk og setninger

ABCD angle ABC angle ACB angle BAC angle equal base BC BC is equal bisect centre circle ABC circumference coincide common construct demonstrated describe diameter divided double draw equal angles equal to FB equilateral exterior angle extremity figure fore four given point given straight line gnomon greater impossible interior isosceles triangle join less Let ABC likewise line be drawn lines AC meet opposite angles opposite sides parallel parallelogram pass perpendicular PROB produced PROP Q.E.D. PROP rectangle contained remaining angle right angles segment semicircle shown sides squares of AC straight line A B Take taken THEOR third touch touches the circle triangle ABC twice the rectangle vertex wherefore whole

### Populære avsnitt

Side 6 - If a straight line meets two straight lines, so as to make the two interior angles on the same side of it taken together less than two right angles...

Side 5 - Let it be granted that a straight line may be drawn from any one point to any other point.

Side 20 - If two triangles have two sides of the one equal to two sides of the...

Side 30 - Parallelograms upon equal bases, and between the same parallels, are equal to one another.

Side 17 - Any two angles of a triangle are together less than two right angles. Let ABC be any triangle ; any two of its angles together are less than two right angles.

Side 84 - IF from a point without a circle there be drawn two straight lines, one of which cuts the circle, and the other meets it; if the rectangle contained by the whole line which cuts the circle, and the part of it without the circle, be equal to the square of the line which meets it, the line which meets it shall touch the circle.

Side 82 - If from any point without a circle two straight lines be drawn, one of -which cuts the circle, and the other touches it; the rectangle contained by the whole line which cuts the circle, and the part of it without the circle, shall be equal to the square of the line which touches it.

Side 11 - UPON the same base, and on the same side of it, there cannot be two triangles that have their sides which are terminated in one extremity of the base equal to one another, and likewise those which are terminated in the other extremity.

Side 19 - To make a triangle of which the sides shall be equal to three given straight lines, but any two whatever of these must be greater than the third, (i.

Side 7 - From the greater of two given straight lines to cut off a part equal to the less. Let AB and C be the two given straight lines, whereof AB is the greater.