Trigonometry, Plane and Spherical;: With the Construction and Application of Logarithms |
Inni boken
Resultat 1-5 av 5
Side 17
we shall have 2C x sine 1 ' line o ' = sine 2 ' . 2C x fine 2 ' sine 1 ' = sine 3 : 2C x
sine 3 fine 2 ' = sine 4 ' . 2C x fine 41 sine 3 ' - sine 5 ' . And thus are the fines of 6 '
, 7 , 8 ' , & c . fuccessively derived from each ocher . The lines of every degree ...
we shall have 2C x sine 1 ' line o ' = sine 2 ' . 2C x fine 2 ' sine 1 ' = sine 3 : 2C x
sine 3 fine 2 ' = sine 4 ' . 2C x fine 41 sine 3 ' - sine 5 ' . And thus are the fines of 6 '
, 7 , 8 ' , & c . fuccessively derived from each ocher . The lines of every degree ...
Side 20
000290 4915 excess , 0000000050 , 05233595 sine 3 ° 0 ' 20002904915 4865 1
' ' rem . , 0526264415 line 3 ° 1 ' 50 2904865 4815 2 ° rem . , 0529169280 sine 3
° 2 ' 50 2904815 4765 34 rem . , 0532074095 sine 3 ° 3 ' 50 2904765 4715 4h ...
000290 4915 excess , 0000000050 , 05233595 sine 3 ° 0 ' 20002904915 4865 1
' ' rem . , 0526264415 line 3 ° 1 ' 50 2904865 4815 2 ° rem . , 0529169280 sine 3
° 2 ' 50 2904815 4765 34 rem . , 0532074095 sine 3 ° 3 ' 50 2904765 4715 4h ...
Side 21
0001486947 86217 1 ' ' rem . , 8595551047 sine 59 ° 16 ' 730 1486217 85487
2d rem . , 8597037264 sine 59 ° 17 ' 730 1485487 84757 30 rem . , 8598522751
fine 59 ° 18 ' 730 1484757 84027 4th rem . , 8600007508 sine 59 ° 19 ' 730 ...
0001486947 86217 1 ' ' rem . , 8595551047 sine 59 ° 16 ' 730 1486217 85487
2d rem . , 8597037264 sine 59 ° 17 ' 730 1485487 84757 30 rem . , 8598522751
fine 59 ° 18 ' 730 1484757 84027 4th rem . , 8600007508 sine 59 ° 19 ' 730 ...
Side 27
and consequently sine A : sine D :: sine DC : sine AC ; or line A : Gne DC :: sine D
: sine AC . COROLLARY 2 . It follows , moreover , that , in right - angled { pherical
triangles ABC , DBC , having one leg BC common , the tangents of the ...
and consequently sine A : sine D :: sine DC : sine AC ; or line A : Gne DC :: sine D
: sine AC . COROLLARY 2 . It follows , moreover , that , in right - angled { pherical
triangles ABC , DBC , having one leg BC common , the tangents of the ...
Side 29
I. Cafe 1. it will be , radius : fine C :: sine CF : sine EF ; that is , radius : sine C :: co
- line BC : co - line A. 2. E. D. COROLLARY . Hence , in right - angled spherical
triangles ABC , CBD , having the same perpendicular BC ( see the last figure ) ...
I. Cafe 1. it will be , radius : fine C :: sine CF : sine EF ; that is , radius : sine C :: co
- line BC : co - line A. 2. E. D. COROLLARY . Hence , in right - angled spherical
triangles ABC , CBD , having the same perpendicular BC ( see the last figure ) ...
Hva folk mener - Skriv en omtale
Vi har ikke funnet noen omtaler på noen av de vanlige stedene.
Andre utgaver - Vis alle
Trigonometry, Plane and Spherical: With the Construction and Application of ... Thomas Simpson Uten tilgangsbegrensning - 1748 |
Trigonometry: Plane and Spherical; with the Construction and Application of ... Thomas Simpson Uten tilgangsbegrensning - 1799 |
Trigonometry, Plane and Spherical: With the Construction and Application of ... Thomas Simpson Uten tilgangsbegrensning - 1799 |
Vanlige uttrykk og setninger
added alſo appears arch balf baſe becauſe called caſe chord circle co-f co-fine AC co-tang common complement conſequently Corol COROLLARY determine diameter difference divided drawn equal equal to half evident exceſs extremes fide AC fine fines firſt follows given gives gles greater half the ſum half their difference Hence hyperbolic logarithm hypothenuſe laſt logarithm manifeft meeting method minute moreover Note oppoſite parallel perpendicular plane triangle ABC preceding progreſſion PROP proportion propoſed radius rectangle reſpectively right-angled ſame ſecant ſee ſeries ſhall ſides ſince ſine ſpherical Spherical triangle ABC ſubtracted ſum ſuppoſed tang tangent of half Tbeor Theor THEOREM thereof theſe thoſe unity verſed vertical angle whence