# Euclid's Elements of Geometry, Bĝker 1-6;Bok 11

Henry Martyn Taylor
The University Press, 1895 - 657 sider
1 Anmeldelse
Anmeldelsene blir ikke bekreftet, men Google ser etter falskt innhold og fjerner slikt innhold som avdekkes

### Hva folk mener -Skriv en omtale

Vi har ikke funnet noen omtaler pċ noen av de vanlige stedene.

### Populĉre avsnitt

Side 70 - If two triangles have two angles of the one equal to two angles of the other, each to each, and one side equal to one side, viz.
Side 218 - The angle which an arc of a circle subtends at the centre is double that which it subtends at any point on the remaining part of the circumference.
Side 279 - If a straight line be bisected and produced to any point, the rectangle contained by the whole line thus produced and the part of it produced, together •with the square...
Side 148 - If a straight line be divided into any two parts, the squares on the whole line, and on one of the parts, are equal to twice the rectangle contained by the whole and that part, together with the square on the other part.
Side 137 - If there be two straight lines, one of which is divided into any number of parts, the rectangle contained by the two straight lines is equal to the rectangles contained by the undivided line, and the several parts of the divided line.
Side 372 - To find a mean proportional between two given straight lines. Let AB, BC be the two given straight lines ; it is required to find a mean proportional between them. Place AB, BC in a straight line, and upon AC describe the semicircle ADC, and from the point B draw (9.
Side 78 - ... the same side together equal to two right angles ; the two straight lines shall be parallel to one another.
Side 303 - To inscribe, an equilateral and equiangular pentagon in a given circle. Let ABCDE be the given circle. It is required to inscribe an equilateral...
Side 420 - PROPOSITION 5. The locus of a point, the ratio of whose distances from two given points is constant, is a circle*.
Side 300 - To inscribe a circle in a given square. Let ABCD be the given square ; it is required to inscribe a circle in ABCD.