Sidebilder
PDF
ePub

Soon after La Condamine's communication to the Academy of Sciences, samples of India-rubber frequently reached Europe, and scientific men began to make investigations regarding this remarkable body. Between 1760 and 1770 we find Fresneau and Macquer studying the subject, and the last-named investigator made tubes and other articles of caoutchouc by dissolving it in ether and coating molds with the solution, so that a solid skin of caoutchouc should remain adherent to the mold on the evaporation of the solvent.

From this time until the end of the eighteenth century, the Indiarubber industry may be considered to have been undergoing its period of gestation, and to have been born with the dawn of the present century. Among the first of the important patents regarding the utilization of caoutchouc is that granted in 1823 to Charles Macintosh, for dissolving the substance in coal-oil, or coal-naphtha, and the use of this solution as a water-proofing agent. I have here a specimen of such a solution, as now manufactured by Messrs. Charles Macintosh and Co., of Manchester, together with some examples illustrating its

uses.

About the same time, elastic webbing was first made with threads cut from the raw rubber, and other minor applications of caoutchouc to the industrial arts were adopted from time to time, until the great discovery of vulcanization inaugurated a new epoch in this branch of industry, rendering it possible to so far alter caoutchouc as to make it capable of resisting, to a great extent, the action of heat on the one hand and cold on the other hand.

The milky sap of many plants contains caoutchouc, suspended in the form of minute transparent globules, these being frequently as small as good to of an inch in diameter; but comparatively few plants contain sufficient caoutchouc to render them important sources of this body.

The trees which yield the largest supply of the best quality of caoutchouc consist of various species of hevea, which flourish in the northern districts of South America, especially in the province of Para, some portions of the valley of the Amazon being crowded to an extraordinary extent with heveas. The abundance of the India-rubber trees in Para may be judged of by the fact that this province alone exported 7,340 tons of caoutchouc in the year 1877, more than half of this being sent to Liverpool.

Among the heveas most productive of caoutchouc may be mentioned the Hevea Brasiliensis, which flourishes in Para, and yields some of the finest caoutchouc, and often attains a height of sixty to seventy feet, with a diameter of nearly three feet; the Hevea Guianensis, a similarly magnificent tree, likewise abundantly productive of caoutchouc; and the Hevea spruceana, a smaller tree, which grows almost exclusively in the province of Para. Fig. 1 represents the flowers and foliage of Hevea Guianensis.

In the operation of collecting the juice several cuts are made through the bark of the tree, and either shells or clay vessels are attached to receive the exuding milky sap. When sufficient of this has been collected, the operation of drying it is performed as follows: A kind of

[graphic]

FIG. 1.-HEVEA GUIANENSIS (FLOWER AND FOLIAGE).

wooden bat, thinly covered over with clay, is dipped into a pail filled with the juice, and the bat, thus coated, is held over a fire, fed with certain wild nuts, which, in burning, give off abundance of aromatic smoke. Fig. 2 represents this operation, and you will see that a kind

of short chimney is fixed over the fire to lead the smoke compactly upward. As soon as the first layer of juice has become indurated, the bat is again dipped, and the drying operation is repeated, layer after layer being thus dried on the bat, until a thickness of nearly an inch is attained. A knife-cut is now made in the bottle or biscuit of caoutchouc thus obtained, so that it can be removed from the wooden bat, and exposed to the air to become still further indurated. Para caoutchouc, prepared in this manner, has a fragrant, aromatic odor, which you can study for yourselves in the samples now before you.

The residues of juice left in the various vessels employed, the scrapings of the incisions, together with other materials, which the ingenious native thinks he can shuffle off on the unsuspecting merchant as caoutchouc, are made into balls, and sold as "negro-head." The negro-head rubber is frequently made into crude representations of animals, and there are several such works of native art on the tableas, for example, this specimen, which will pass about equally well for a horse, a pig, or a crocodile.

Here is a piece of Para bottle-rubber, which has been boiled for some hours in water, and you see that it is now so far softened as to render it easy to pull asunder the several layers of which it is composed, its laminated structure being thus very well illustrated.

The milky juice of the Para rubber trees, of which you see a specimen before you, has approximately the following composition:

[blocks in formation]

As a rubber-producing tree, the Ficus elastica stands next in importance of the heveas. The Ficus elastica grows abundantly in India and the East Indian Islands, one district in Assam, thirty miles long by eight miles wide, being said to contain 43,000 trees, many of them attaining a height of a hundred feet. This tree also grows freely in Madagascar, and it is well known to us as a greenhouse plant. Fig. 3 represents a Ficus elastica now growing out of doors in the Parc Monceau at Paris.

The juice of the Ficus elastica contains notably less caoutchouc than that of the American trees, the proportion very often falling as low as ten per cent. of the juice.

A vine-like plant, the Urceola elastica, which grows abundantly in Madagascar, Borneo, Singapore, Sumatra, Penang, and other places, yields a considerable amount of caoutchouc of very good quality. Africa yields a considerable quantity of caoutchouc, but generally soft and of inferior quality. It is believed to be yielded by various species of landolphia, ficus, and toxicophlea. Here are some specimens of African rubber-this specimen, representing the quality known as

African ball, being tolerably firm in consistency, while the African flake, which you see here, and the African tongue, represent the lowest and most viscous qualities of commercial rubber.

The commercial value of the various qualities of rubber may be estimated, to a certain extent, by noting the loss which the samples. undergo during the operation of washing, and also by noticing how far the various samples are softened by a long-continued gentle heat. Here are some samples which have been heated for some hours in this water-oven; you will notice that the African tongue has become almost as soft as treacle, while the Para rubber still retains its form and much of its consistency.

Caoutchouc is nearly colorless, and when in thin leaves tolerably transparent. It, like very many other substances, contains nothing but carbon and hydrogen, but its properties differ very widely from those of other hydrocarbons almost identical in composition. It has been found to contain, in one hundred parts, 12-5 of hydrogen and 87.5 of carbon. Caoutchouc, as might be supposed, burns very readily and leaves no residue; if I set fire to a few ounces, you see how it blazes up. It is soft, and very imperfectly elastic, in the true sense of the term-that is to say, it does not return to its old dimensions after having been considerably stretched. Here is a strip of pure (i. e., unvulcanized) caoutchouc a foot long; you see that I have stretched it to a length of three feet, and, after holding it stretched for a few seconds, I relax it. It now measures, as you see, several inches over the foot. The elasticity of caoutchouc may be enormously increased by vulcanization.

As regards the stretching of India-rubber, there is a point at which it requires a greatly increased force to stretch it, and at this point it seems to become fibrous in texture, as you may perceive by examining this extended sample by the aid of a magnifying-lens. India-rubber has valuable electrical properties, as you are no doubt aware, it being an admirable insulator, and having a great tendency to become electrical by friction.

Freshly cut surfaces of India-rubber cohere very strongly when brought into contact, and this is well illustrated by the old way of making a tube of unvulcanized caoutchouc. You see that I wrap a sheet of caoutchouc round a mandrel, so that the edges project parallel to each other. These parallel edges being cut off by means of scissors, the freshly cut edges adhere, and a perfect tube is the result. Toy balloons are made in a somewhat analogous manner, and are cold vulcanized afterward.

Either French chalk or soapy water is of constant use in the rubberfactories, to prevent the adhesion of new surfaces of caoutchouc to each other, or to other substances.

Cold has a remarkable effect on caoutchouc, rendering it rigid and inelastic, and this circumstance considerably detracts from the value

1

of unvulcanized India-rubber. Here is a strip of India-rubber; you see that it is quite soft and pliable. I will now expose it for a few minutes to a temperature of 0° Centigrade, or the freezing-point of

[graphic][merged small]

water. It becomes, as you see, rigid and stiff, but its original pliability may be restored, either by warming, or by applying sufficient tensile strain to it, to extend it to three or four times its length. One half

« ForrigeFortsett »