Sidebilder
PDF
ePub

The Cotton-Worm.

By Charles V. Riley. Illustrated. Washington: Government PrintingOffice. 1880. Pp. 144.

Survey for 1879. By T. C. Chamberlain. Madi- | Pennsylvania: in Delaware River (Philadelson. 1880. Pp. 72. phia), Schuylkill River (Carlisle, Reading); Susquehanna and its affluents (Hummelstown, Berwick); Ohio River (Pittsburgh). Maryland: Havre de Grace. Virginia:

The Chinch-Bug. By Cyrus Thomas. With Map and Illustrations. Washington: Government Printing-Office. 1879. Pp. 44.

Therapentic Action of Mercury. By S. V. Clevenger, M. D. Chicago: Knight & Leonard. 1880. Pp. 27.

Extra Meridian Determination of Time. By

Ormond Stone, A. M. Cincinnati Society of

Natural History. Pp. 6.

Adulteration of Food. By Albert R. Leeds, Ph. D. From Third Report of New Jersey State Board of Health." Pp. 18.

A Subject-Index to the Publications of the United States Naval Observatory, 1845-1875. By Edward S. Holden. Washington: Government Printing-Office. 1879. Pp. 74, 4to.

Health and Health-Resorts. By John Wilson, M. D. Philadelphia: Porter & Coates. 1880. Pp. 288.

Our Homes. By Henry Hartshorne, M. D. Philadelphia: Presley Blakiston. 1850. Pp. 149.

50 cents.

[blocks in formation]

POPULAR MISCELLANY.

Where to find the Crayfish.-Professor Huxley, in his valuable work on the crayfish, published in the "International Scientific Series," tells his readers to study the work with "crayfish in hand." In order that readers may be able to do this, the following localities are given, copied from Dr. Hagen's monograph on the Astacidæ, with some localities added by the author: Vermont: in affluents of Lake Champlain; at Burlington, Shelburne, Colchester, Chittenden County. Massachusetts: Western parts of the State, on the authority of Mr. S. H. Scudder. New York: Hudson River and its affluents; Newburg, Fishkill; in the Tioga, affluent of the Susquehanna; at Berkshire, Tioga County; Lake Ontario; Genesee River, at Rochester; Garrison Creek, near Oswego; Lake Oneida; Four-Mile Creek, near Sackett's Harbor; and Grass River, a branch of the St. Lawrence; also at Niagara. New Jersey: Essex, Schooley's Mountain, Morris.

James River and its affluents (Petersburg), the Rappahannock (Fredericksburg), and Greenbrier River. District of Columbia: Georgetown.

[ocr errors]

North Carolina: Beaufort.

South Carolina: Wateree River, Charleston, and Summerville. Georgia: Athens, Milledgeville, Roswell. Florida: Pensacola. Alabama: Huntsville, Mobile. Mississippi: Mobile River, Monticello, Rootpond. Louisiana: New Orleans, Millikin's Pond. Tennessee: Lebanon. Kentucky: Mammoth Cave, Little Hickman, Hickman's Landing. Indiana: Wabash River (Delphi). Ohio Cincinnati, Columbia, Dayton, Miami River, Kelley Island, Lake Erie. Michigan Lake Superior, and reported from Lake St. Clair. Wisconsin: Sugar River, and also reported from Milwaukee. Minnesota: Collected by Professor Agassiz at Minnehaha Falls. Iowa: Mississippi River at Davenport and Burlington. I have found it in greatest abundance at Dubuque. Illinois Chicago, Evanston, Ogle County, Lawn Ridge, Basson Pudge, Peoria, Athens, Quincy, Belleville, Illinois River and its affluents. Missouri: St. Louis, and Osage River. Arkansas: One species reported, locality unknown. Texas: Between San Antonio and El Paso del Norte. Nebraska: One species reported, without locality. Washington Territory: Puget Sound. Oregon: Astoria, Columbia River, Lake Klamath. California: San Francisco. Canada: Humbe River, near Toronto; Lake Winnipeg, Saskatchewan and Red Rivers. I have found them in the watercourses of northern Maine, and St. John's River, in New Brunswick. Dr. Hagen's monograph was published ten years ago. Many new localities have been recorded since; doubtless they will be found in every State and Territory in the Union. The animals may be found sheltered under or between loose stones along the edges of brooks and rivers. They are very active in their efforts to escape. Owing to their greenish and brownish hues, it is difficult to find them. They may easily be kept in confinement for a long time, and their movements and habits studied.-EDWARD S. Morse.

The Winter in Europe. The earlier part | of the winter of 1879-'80, while it was exceptionally mild in America, was distinguished in Europe for its severity. In France it is spoken of as the coldest winter which has been recorded for more than a century. It appears that the temperature of October was a little below the usual mean. November gave twelve days of frost; and December surpassed everything that had been known in Paris, in the intensity and duration of the cold. From the 26th of November to the 28th of December, that is, during thirty-three consecutive days, there was frost every day, and during fourteen days of the period, from the 14th to the 28th of December, the thermometer did not rise above the freezing-point. The beginning of December was tempestuous. The storm-center, coming up from the ocean on the morning of the 3d, passed Paris between the 4th and 5th, accompanied by a rapid depression of the barometer and a perceptible rise of temperature from about 18°. The storm, having caused great damage in France, then went to the east, and gradually diminished in intensity as it passed over Germany. About ten inches of snow fell during this storm, and four inches more on the 8th, after which it cleared off, and the extraordinary cold began. The mean temperature of December in Paris is 384°; the temperature of December, 1879, was 18.3. The lowest mean temperatures previously recorded in the present century were in 1812 (30-2°), 1829 (25·7°), and 1840 (27.9°). The nearest approach to the temperature of the last December was probably in December, 1788, but the uncertainty of the observations taken at that period makes an exact comparison impracticable. The temperature on the 10th (-14°) was the lowest ever observed. The cold, at the period of its greatest intensity, on the 9th and 10th, presented a remarkable distribution over the surface of Europe. On the first day, two centers of cold were manifested, one being toward Poland, where the thermometer sunk to -32°, the other in the French departments east of Paris. On the second day, the former center had increased in surface but diminished in intensity, while the second center had extended and had reached Paris, and the cold had increased over nearly the whole of France.

The temperature continued high on the bor. ders of the British Channel and the ocean, so that great contrasts were presented in places not very far from each other according as they were near to or removed from the sea. Vegetation suffered from the duration of the cold, so that most of the exotics in the public gardens were killed or greatly injured. A zone of high pressure was es tablished in all the west of Europe after the storm of the beginning of the month, the center of which oscillated from France to Poland and from Austria to Denmark. It was observed that the low temperature was special to the inferior regions of the atmosphere. At the height of a little over a thousand yards the air was much more mild. During the latter part of the month the thermometer on the Puy-de-Dôme was often thirty to forty degrees higher than at Clermont, and on the Pic du Midi it rose every day after the 19th to above the freezing-point, while it was still always below it at Paris. The cold terminated suddenly on the 28th, with a storm from the North Sea; a thaw followed, with destructive floods. A new cold term set in after the 4th of January, with a region of high pressure in the center of Europe. The summits again showed a higher temperature than the base of the mountains. The region of extreme cold was this time, however, in Russia.

M. Marié Davy, Director of the Observatory of Montsouris, remarks, in a communication to the Société Française d'Hygiène, that this has been the sixth severe winter of the century; and the six have recurred with remarkable regularity in periods of two each, viz.: 1788-'89 and 1794-'95, interval six years; 1829-'30 and 1837-'38, interval eight years; 1871-'72 and 1879'80, interval eight years. These periods were each removed to a medium distance of about forty-two years from each other. The near equality of the periods of recur rence is probably a simple coincidence, but it is nevertheless curious. M. Faye has published an account of the meteorological observations, which have been made to the month of May, 1879, at the observatory of the French missionaries in China, at Zi-kawei. From them the director of the observatory draws the conclusions-1. That storms and tempests, and in general all barometric depressions, are propagated in

China and Japan in the same course as the storms and tempests of the Atlantic which reach Europe; 2. That such storms are independent of the prevailing monsoon, and reciprocally, neither interfering with the other. Thus, says M. Faye, in regions opposed to ours in the northern hemisphere, the storms which we call cyclones or typhoons follow identically the same course, whatever may be the distribution of water and land, whether there are currents of warm water like the Gulf Stream, chains of mountains or not, on their way, whatever may be the direction of the lower winds prevailing in the country. The origin of these gyratory phenomena is, then, in the upper region of the atmosphere, whence, away above all the superficial accidents of the globe, they descend to the ground through the lower strata.

Wild Silks. That our resources for the production of silk are capable of great enlargement is shown by the fact that heretofore only a few of the numerous insects which form silk and only a small number of the plants on which they feed have been utilized, leaving the greater number of insects and plants still unemployed. The known silk-spinners belong to the two families Bombycidæ and Saturniidae, of the Lepidoptera. All of the Saturniide are silk-spinners, but not all of the Bombycide. Of the Saturniida, the British Museum catalogue contains the names of two hundred and ninety-four species, and one hundred more species have been added since the catalogue was published. Mr. Thomas Wardle, in a lecture on the wild silks of India, before the Society of Arts, gave a list of fifty-seven silkworms indigenous to India, of which six mulberry-feeding sorts are domesticated, and the others are wild. Besides the mulberry-feeding worms, of which there are also nine wild species, the cocoons of fourteen wild species are utilized. Of these, the principal species are the Attacus ricini, the Attacus cynthia, or Eria-worm, the Antheræa Assama, or Muga-worm, and the Antheraea paphia, or Tusser-worm. The Attacus ricini is a native of Assam, and feeds on the castor-oil plant and several other plants of the country. The cocoons can not be reeled, but the fiber is exceedingly well adapted for spinning, can be dyed and print

ed easily and satisfactorily, and forms a cloth of "incredible durability, the life of one person being seldom sufficient to wear out a garment made of it, so that the same piece descends from mother to daughter." Attacus cynthia feeds on the ailantus, and has been successfully domesticated in France and England, where "ailanticulture" has a recognized place in industrial economy. Its silk is not adapted for reeling, but spins well, and there is no doubt, says Mr. Wardle, "that a great future remains for this silk, now that spinning-machinery has been so perfected." The Attacus Atlas is almost omnivorous, yields a "decidedly good" silk, and has been recommended for introduction into France. The Antheræa Assama yields the Muga silk, which forms one of the chief exports of Assam. Five thousand acres are planted in Assam and some Tipperah villages with food for the worm, and are capable of yielding 123,000 pounds of the fiber. Mr. Wardle reports of the silk that it bleaches well, and takes the dye freely, better than Tusser. The Antheræa paphia, from which the Tusser silk is derived, is the most widely distributed as well as the most important of the wild-silk producers of India, and has been utilized for many centuries. It feeds on a variety of plants, among them the castor-oil plant, and begins to spin its cocoons in six weeks from the time it is hatched. The silk is woven and used in the provinces of India in mixed fabrics of cotton woof and Tusser weft, but seems also to be used pure in many cloths. The fiber of this silk is flat, thereby showing a strong difference from that of the mulberry silk, which is round, and to this is ascribed its glassy look. So far from this property being a drawback, the luster seems to be enhanced by it after the fiber has become modified and its flatness has been diffused in the loom. The chief obstacle to the general introduction of this silk is the difficulty with which it is made to take colors. A process has been invented to overcome this by applying oxygen to the natural fawn-colored coloring matter of the fiber, but it is too expensive for general use. Mr. Wardle has found a partial solution of the difficulty in a more thorough cleansing of the native product and better reeling, and has made the silk submit to the dye and to the printing process in a tolerably sat

isfactory manner. In the undyed state it is the most lustrous of all silks, and is very strong. Some of the prints obtained by Mr. Wardle are beautifully suited to wallhangings, curtains, coverlets, and all kinds of furniture-work; and, while the material has not quite the brilliancy of the mulberry silk in its printed state, it has a richer and softer surface than those of cretonnes or challis, while its lasting qualities are superior to those of any other material. It is begin ning to be largely used in France for fabrics and trimmings in which extreme fineness is not required.

Fertilization of the Algerian Sahara.Some remarkable transformations in the character of the Algerian Sahara have been effected by irrigation. Under its operation a soil has been constituted, in which the intertropical plants grow with great vigor. A cultivator at Ouargla received several medals at the Parisian Exposition for plants which he had raised on a soil thus prepared. The stories that have been told of the productiveness of the Sahara tax the imagination. Fertility is not limited to any one point. It is exhibited wherever water has been brought to the surface of the soil. Most of the Saharan valleys and the beds of the subterranean streams have water in abundance, and only a small effort is needed to bring it to the surface. Sahara is not all a desert, but contains many considerable tracts which are already fit for cultivation. The success which has attended the efforts so far made to introduce tillage renders it nearly certain that a like reward may be gained from similar applications of labor in other parts. Henceforth it will be safe to say that the transformation of the Sahara is only a question of time, labor, artesian wells, means of communication, and security.

The Source of Marsh-Odors.-M. T. L. Phipson recently read, in the French Academy of Sciences, an account of the substances which he had succeeded in extracting from fresh-water algae. They are palmelline, xanthophyll, chlorophyll, and characine. The last substance receives its name from the odor of chara, a well-defined marshy smell which it gives out. It is lighter than water, on the surface of which it forms minute pellicles, but is very spar

ingly dissolved. It is obtained by first drying the algae in the air, and then covering them again with cold water as in the preparation of palmelline. After eight or ten hours, a thin iridescent layer will appear on the surface of the water. This is the odorous substance in question. The liquid should be decanted into a long, narrow tube, and shaken with a quantity of ether. The ether dissolves the characine, and leaves it after evaporation in the form of a white, greasy, volatile substance, not saponifiable, soluble in alcohol and ether, hardly soluble in water, and having a strong characteristic odor of the marsh, which it communicates to the water. After some days it evaporates from the surface of the water, or disappears by oxidation, and the water loses its marshy odor. This odor, so strongly developed in plants of the genus Chara, is due to this new substance, which is formed by the plant itself during its life, and is not a product of decomposition. Characine is found in all the terrestrial algæ, and in the confervæ.

A Fossil Ferment.-M. Van Tieghem has called attention, in the French Academy of Sciences, to the evidence of the existence of the butyric ferment, bacilus amylobacter, in the coal period, which has been obtained by the microscopic examination of the radicles of conifers that have undergone its action, and are silicified in the phytogenic rocks of Saône-et-Loire. These fossils have been subjected to much study by M. B. Renault, assistant naturalist of the museum. The radicles exhibit precisely the same characteristic marks of alteration as are seen in corresponding radicles of the present epoch, which have been kept under water, and have become the prey of the bacilus. We know that the effect in the latter case is to subject the cellulose of the radicles to the butyric fermentation; and the conclusion is legitimate that the reactions developed in the marshes at the expense of the ligneous matter during the coal period were identical with those from which we observe the same effects now. The importance of these observations will be appreciated by those who are studying the part which causes that are now in operation have played in the geological past.

[merged small][merged small][graphic][merged small][merged small]
« ForrigeFortsett »