Plane and Solid Geometry

Ginn, 1895 - 320 sider

Hva folk mener -Skriv en omtale

Vi har ikke funnet noen omtaler på noen av de vanlige stedene.

Innhold

 INTRODUCTION 1 PLANE GEOMETRY 12 TRIANGLES 18 EQUALITY OF POLYGONS 77 DEFINITIONS 102 METHODS 131 RATIO AND PROPORTION 138 CUMFERENCE 152
 MENSURATION OF PLANE FIGURES REGULAR 170 APPENDIX TO PLANE GEOMETRY 196 SOLID GEOMETRY 208 PAGE 237 THE CYLINDER CONE AND SPHERE 265 TABLES 308 INDEX 317 Opphavsrett

Populære avsnitt

Side 90 - The projection of a point on a line is the foot of the perpendicular from the point to the line. Thus A
Side 127 - To draw a tangent to a given circle from a given point.
Side 295 - The sum of the angles of a spherical triangle is greater than two and less than six right angles ; that is, greater than 180° and less than 540°. (gr). If A'B'C' is the polar triangle of ABC...
Side 74 - Prove analytically that the perpendiculars from the vertices of a triangle to the opposite sides meet in a point.
Side 37 - If two triangles have two sides of the one respectively equal to two sides of the other, and the contained angles supplemental, the two triangles are equal.
Side 159 - If two triangles have one angle of the one equal to one angle of the other and the sides about these equal angles proportional, the triangles are similar.
Side 225 - Theorem. If each of two intersecting planes is perpendicular to a third plane, their line of intersection is also perpendicular to that plane. Given two planes, Q, R, intersecting in OP, and each perpendicular to plane M. To prove that OP _L M.
Side 265 - A Plane Surface, or a Plane, is a surface in which if any two points are taken, the straight line which joins these points will lie wholly in the surface.
Side 94 - To construct a parallelogram equal to a given triangle and having one of its angles equal to a given angle.
Side 24 - ... 3. If two sides of a triangle are equal, the angles opposite these sides are equal ; and conversely.