Sidebilder
PDF
ePub
[blocks in formation]

which being identical with (1) when x = x', we have

SP2 NP', and ..

SP = NP'. Q. E. D.

The geometrical proof, although easier, is not grounded on such obvious and general principles as this.

112. Euler, who invented this theorem, conceived it to be universally applicable; but we shall presently see that it is true only in a very particular class of polyedrons.

Case 1. Let the polyedron be without perforation, and consist of one surface only.

Let F, S, E, be the number of faces, solid angles and edges of the polyedron, respectively.

Then supposing any one face projected upon a given plane in such a manner that the interior angles of the projection may be each less than two right angles, and all the others upon the same plane, so that their projections may be wholly within the former, (which is evidently possible), the projection thus formed of the polyedron will consist of F plane polygons, united by the S points of concourse of the E different sides, one of them circumscribing the rest. Now, supposing n, n,, n..... ny to represent the number of edges in the respective faces or polygons; then, since it can evidently make no difference in the sum of the inner angles of the interior polygons, whether or no any of them be greater than two right angles, (for they equally fill space about the points of concourse), we have

[merged small][subsumed][merged small][ocr errors][merged small][merged small][merged small][ocr errors][ocr errors][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][ocr errors][merged small]

But, since each of the sides, except those of the circumscribing polygon, is common to two of the polygons, we have

[merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small]

which shews the Theorem to be true in this case.

Case 2. Let the polyedron be supposed to be hollow, i. e., to have two surfaces consisting of plain faces, one interior with respect to the other.

Then, supposing s, f, e; s', f', e', to be the number of solid angles, faces and edges of these surfaces, we get, by case 1,

s+fe + 21
s' +ƒ=e' +25

and ss' S',f+f' F, and e+ e E
.. in this case

S+FE+4;

and, generally, if there be h interior boundaries, we get

S+FE+ 2 (h + 1) . . . . .

.......

(2).

Case 3. Let the polyedron be annular, or have a perforation. Then, supposing a plane to cut it into two polyedrons of the first class, making (m) new edges, and .. (m) new solid angles, and two new faces in each, we have (using the above notation)

s+fe +27
e2

s' +ƒ=e' + 25

:. s + s + ƒ + ƒ′ = e + e' + 4

Or S+m+F+ 4 = E+ m + 4

..S+F=E;

and, generally, if there be p such perforations, we have

[blocks in formation]

Case 4. Suppose the polyedron formed by the union of two others of the first class, in making the planes of two of their unequal faces coincide, so that the face of the one may be wholly within that of the other.

Let S, F, E, be the number of solid angles, faces, and edges of

the compound polyedron: s, ƒ, e; s', f', e', those of the components, then by case (1)

s +ƒ=e+ 22

s' + ƒ= é + 25

..s + s +ƒ +ƒ = e + e + 4

But ss S, ƒ +ƒ' = F + 1, e + e E

..S+FE+3;

and similarly, if the polyedron be formed by the union of n others, upon any face of one of them, we have

S+FE+ 2 + n.

Hence, generally, if n,, na, na, .... n be the number of such formations upon each of m faces, we have

S+FE+ 2 + n, + n2 + nz + nm (4)

[ocr errors]
[ocr errors]

Hence, then, Euler's Theorem may be generalized, by stating it, If a Polyedron have (h) interior surfaces, (p) perforations, and N19 N29 Ng9 .... nm augments upon m of its faces severally, then

S+FE+ 2 + 2 (h − p) + n ̧ + n + Nm.

[ocr errors]

113. In the axis AB of the cycloid AP (Fig. 59,) of which C is the centre of its generating O, let CN=AM, then if MP be AB, PN be joined, &c., as in the fig. required to shew that the sector ANPA MQB.

Let AC = r, AM = x, PM = y, then the equation to the cycloid is

y = AQ + QM = vers. x + √2rx x2

[ocr errors][ocr errors][merged small]

ƒ√2rx-x2 × dx

=SQM × d. AM area AMQ, i. e., Am P = AMQ.

[merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small]
[blocks in formation]

And the area = fydx = r fdx. sin. x = c — Let x = 0. Then cr2, and the area = r2 x AC, then the whole area = r2.

115.

[merged small][ocr errors][merged small]

Let AP (Fig. 60,) be any curve whatever, and suppose ordinates PP'AN, to be erected on AP as a line of abscissæ, tracing out the curve AP'; then T being the intersection of the tangents at P, P', and p'p the next position of the ordinate, if P'm' be drawn parallel to TPp we have, by similar ▲

[merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small]

which will always give the value of PT, when y' is a function of s,

[blocks in formation]

.. PT is known, and joining P'T we get the tangent PT. In the case of the cycloid AP is the generating circle, and n = 1, and .. PT PP'.

[blocks in formation]
[blocks in formation]

TPA by property of the circle. See Prob. 26,

[blocks in formation]

116.

Let the base AB of the ▲ ABC = a, and the angle

AnB, then AC being the radius vector p, and

angle traced by it, we have

A = 0 the

[blocks in formation]

the polar equation to the locus of C, which will be a straight line,

hyperbola, &c., according as n = 1, 2, &c.

[blocks in formation]

(See Appendix to new edit. of Simpson, or

a sin. 2 no

[blocks in formation]

0

n cos.no, sin. n+1.0−(n+1) sin. n cos. n + 10 a sin. no

[ocr errors]

the subtangent at any

[merged small][ocr errors][merged small][ocr errors]

(n + 1) 0 = 0, :. 0 =

T

n+1

Let poo, then C = T

[merged small][merged small][merged small][ocr errors][merged small][merged small][ocr errors][merged small]

which is also given in position by its inclination to AB, which is

[ocr errors][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][ocr errors][merged small]

Hence drawing a Lat its extremity, we shall have the asymptote required.

« ForrigeFortsett »