Sidebilder
PDF
ePub
[blocks in formation]

And eliminating x, x', y', y' from the above five equations (1),

[merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small]

the equation to a parabola, whose greatest ordinate, corresponding abscissa, and parameter, are easily found to be

[blocks in formation]

No. (374) is but a particular case of this.

In the problem, A = 2, a = 20, 0 ≈ 60°; B = 3; b = 25, and = 30°, whence it is easy to find the required quantities.

390.

Since the horizontal velocities of both sound and the projectile are constant, and describe (by supposition) the same space in the same time, these velocities must be equal (s = tv). Hence, a being that of sound, we have, by the question, and by (370)

y=0x tan.

a2

gx1 2a'cos.20

.. x = 0, or = × sin. 20 the range required.

391.

g

Te a be the height of the tow.

by (370)

[blocks in formation]
[ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small]

where, by the question, y=0,0 15, = 100 feet, Hence, substituting, &c., we get

[ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors]

since the space described with the velocity v. continued uniform would be tv, and that through which the body would descend

[merged small][merged small][merged small][ocr errors][ocr errors][merged small][merged small][merged small][merged small]

t2. But by the question, v≈ 30 feet,

..s 360 12g = - 26 feet nearly, or the body will be lower down the plane by 26 feet than the point of projection. Hence the velocity (u) of the body after 12" will by 30 + that acquired by falling through 26 feet of the plane.

[merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small]
[merged small][ocr errors][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small]

Hence, if b be the distance of the foot of the inclined plane from the point of projection, (since the equation to the section of that plane made by the plane of motion is y' (x' - b) tan. 30°

[merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][ocr errors][merged small][merged small][merged small][merged small][merged small]

Again, the greatest altitude above the horizon is (370)

[ocr errors][merged small]

3750

(100) ×3 = feet, whence it is easy

2g

[ocr errors]

Sg

to find that above the plane.

398. By (389) the greatest altitude of the centre of gravity of A, B, projected with the velocities a, b, is generally,

[blocks in formation]

Here 90°; .. the greatest altitude required is

[merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small]

be the equation, referred to the same origin, of the section of the inclined plane, made by the plane of motion, we have

[blocks in formation]

400. Making the intersection of the horizon with the bank, the line of abscissæ (x) (originating in the point of projection), and taking the ordinates (y) in the plane of the bank, it is evident that the motion parallel to (x) will be uniform, and that parallel to (y) the same as down the common inclined plane, whose inclination (a) is the same as that of the bank. Hence, (v) being the velocity of projection, and the which its direction makes with the line of intersection, we have,

[blocks in formation]

The greatest ordinate, corresponding abscissa, and parameter,

[merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][ocr errors][ocr errors][merged small]

The place where the body meets the horizon is determined by putting y = 0, which gives

[ocr errors][merged small][merged small][ocr errors][merged small][ocr errors]

401.

Let AB = BC (Fig. 89.) represent the equal times of descent and ascent; Aa, Cc the initial velocities, and Bb, BD the ultimate velocities; then the spaces described (Wood, p. 139,) are denoted by

ABba, BCCD.

But, by the question, the spaces described are equal, and aĎb = DEC (being the spaces due to gravity). Hence

. Cc Aa

ABDa BCED; and since

AB = BC, .. Aa≈ BD = CE.

Ec = velocity acquired by falling vertically in

the time AB.

402.

Let a, b, be the altitudes fallen through by A, B, to

acquire the velocities u, v ; then

u = √2ga, v = √2gb

Hence, being the horizontal distance moved, we have

[ocr errors][merged small][merged small][merged small][ocr errors][ocr errors][ocr errors][merged small][merged small][merged small][merged small]
« ForrigeFortsett »