### Hva folk mener -Skriv en omtale

Vi har ikke funnet noen omtaler pĺ noen av de vanlige stedene.

### Innhold

 66 8 9 25 11 28 14 36 Ratios of the elements of a circle 41 Exercises 47 Examples 49 Miscellaneous 84
 Ratios of parallelopipedons 8 Frustum of the pyramid and cone 14 Measure of a spherical segment 1 Polar or supplemental triangles 11 Exercises in spherical geometry 17 APPENDIX IV Center of mean distances 5 MENSURATION 1

### Populćre avsnitt

Side 33 - In obtuse-angled triangles, if a perpendicular be drawn from either of the acute angles to the opposite side produced, the square of the side subtending the obtuse angle, is greater than the squares of the sides containing the obtuse angle, by twice the rectangle contained by the side upon which, when produced, the perpendicular falls, and the straight line intercepted without the triangle, between the perpendicular and the obtuse angle.
Side 70 - The areas or spaces of circles are to each other as the squares of their diameters, or of their radii.
Side 50 - Proportional, when the ratio of the first to the second is equal to the ratio of the second to the third.
Side 50 - Four quantities are said to be proportional when the ratio of the first to the second is the same as the ratio of the third to the fourth.
Side 60 - Carol. 4. Parallelograms, or triangles, having an angle in each equal, are in proportion to each other as the rectangles of the sides which are about these equal angles. THEOREM LXXXII. IF a line be drawn in a triangle parallel to one of its sides, it will cut the other two sides proportionally.
Side 23 - All the interior angles of any rectilineal figure, together with four right angles, are equal to twice as many right angles as the figure has sides.
Side 1 - A straight line is said to be perpendicular to a plane when it is perpendicular to every straight line which passes through its foot in that plane, and the plane is said to be perpendicular to the line.
Side 51 - Proportion, when the ratio is the same between every two adjacent terms, viz. when the first is to the second, as the second to the third, as the third to the fourth, as the fourth to the fifth, and so on, all in the same common ratio.
Side 5 - ... 07958 in using the circumferences j then taking one-third of the product, to multiply by the length, for the content. Ex. 1. To find the number of solid feet in a piece of timber, whose bases are squares, each side of the greater end being 15 inches, and each side of the less end 6 inches ; also, the length or perpendicular altitude 2-1 feet.
Side 2 - What is the upright surface of a triangular pyramid, the slant height being 20 feet, and each side of the base 3 feet ? • Ans.