Treatise on Plane and Solid Geometry: For Colleges, Schools and Private Students : Written for the Mathematical Course of Joseph Ray

Forside
Sargent, Wilson & Hinkle, 1864 - 276 sider

Inni boken

Hva folk mener - Skriv en omtale

Vi har ikke funnet noen omtaler på noen av de vanlige stedene.

Andre utgaver - Vis alle

Vanlige uttrykk og setninger

Populære avsnitt

Side 98 - If two triangles have two sides of the one respectively equal to two sides of the other, and the included angles unequal, the triangle which has the greater included angle has the greater third side.
Side 52 - A circle is a plane figure bounded by a curved line, every point of which is equally distant from a point within called the center.
Side 141 - The square described on the hypothenuse of a right-angled triangle is equivalent to the sum of the squares described on the other two sides.
Side 263 - The area of the surface of a sphere is equal to the area of the...
Side 258 - The sum of the angles of a spherical triangle is greater than two and less than six right angles ; that is, greater than 180° and less than 540°. (gr). If A'B'C' is the polar triangle of ABC...
Side 137 - The squa/re described on the difference of two straight lines is equivalent to the sum of the squares described on the two lines, diminished by twice the rectangle contained by the lines.
Side 227 - ... the two planes are equal polygons. Each side of one of the sections is parallel to the corresponding side of the other section, since they are the intersections of two parallel planes by a third. Hence, that portion of each side of the prism which is between the secant planes, is a parallelogram. Since the sections have their sides respectively equal and parallel, their angles are respectively equal. Therefore, the polygons are equal. 674. Corollary — The section of a prism made by a plane...
Side 237 - The volume of any prism is equal to the product of its base by its altitude. Let V denote the volume, B the base, and H the altitude of the prism DA'.
Side 191 - Theorem. — The intersections of two parallel planes by a third plane are parallel lines. Let AB and CD be the intersections of the two parallel planes M and N, with the plane P.
Side 251 - Every section of a sphere, made by a plane, is a circle, Let AMB be a section, made by a plane, in the sphere whose centre is C.

Bibliografisk informasjon