## The school Euclid: comprising the first four books, by A.K. Isbister |

### Hva folk mener - Skriv en omtale

Vi har ikke funnet noen omtaler på noen av de vanlige stedene.

### Andre utgaver - Vis alle

The school Euclid: comprising the first four books, by A.K. Isbister Euclides Uten tilgangsbegrensning - 1862 |

The School Euclid: Comprising the First Four Books, Chiefly from the Text of ... A. K. Isbister Ingen forhåndsvisning tilgjengelig - 2009 |

### Vanlige uttrykk og setninger

ABCD angle ABC angle BAC angle BCD angle equal assumed base base BC BC is equal bisect Book centre circle ABC circumference common constr CONSTRUCTION DEMONSTRATION describe diameter divided double draw drawn English equal exterior angle extremity fall figure four Geography given circle given point given straight line Grammar greater half History inscribed join Latin less Let ABC likewise manner meet opposite angles parallel parallelogram pass pentagon perpendicular post 8vo PROBLEM produced proved Q. E. D. PROP reason rectangle contained rectilineal figure References remaining angle right angles School segment semicircle shown sides square square of AC THEOREM third touches the circle triangle ABC twice the rectangle wherefore whole

### Populære avsnitt

Side 94 - A CONSTRUCTION For, if not let it fall otherwise, if possible, as FGDB; let F be the centre of the circle ABC, and G the centre of ADE. Join AF and AG. DEMONSTRATION Because two sides of a triangle are together greater than the third side therefore AG, GF, are greater than FA;

Side 17 - and they are adjacent angles. But, ' when a straight line standing' on another straight line makes the adjacent angles equal to one another, each of the angles is called a right angle;' (def. 10) therefore each of the angles DCF, ECF, is a right angle. Wherefore, from the point C, in the straight line AB,

Side xvii - to the same two, and when the adjacent angles are equal, they are right angles. Prop. 32. If a straight line touch a circle, and from the point of contact a straight line be drawn cutting the circle; the angles made by this line with the line touching the circle, shall be

Side ii - at right angles to a given straight line, from a given point in the same. Prop. 13. The angles which one straight line makes with another upon one side of it, are either two right angles, or are together equal to two right angles. Prop. 14. If, at a point in a straight line, two other straight lines,

Side 2 - XV. A circle is a plane figure contained by one line, which is called the circumference, and is such that all straight lines drawn from a certain point within the figure to the circumference are equal to one another. XVL And this point is called the centre of the circle.

Side ix - line be bisected, and produced to any point, the rectangle contained by the whole line thus produced, and the part of it produced, together with the square of half the line bisected, is equal to the square of the straight line which is made up of the half and the part produced.

Side 118 - (i. 32) and when the adjacent angles are equal, they are right angles, (i. def. 10.) PROP. XXXII. —THEOREM. If a straight line touch a circle, and from the point of contact a straight line be drawn cutting the circle; then the angles made by this line with the line

Side iii - to four right angles. Prop. 16. If one side of a triangle be produced, the exterior angle is greater than either of the interior opposite angles. Prop. 17. Any two angles of a triangle are together less than two right angles. Prop.

Side 47 - Wherefore, triangles, &c. QED PROP. XXXVIII THEOREM. Triangles upon equal bases and between the same parallels are equal to one another. (References — Prop. i. 31, 34, 36 ; ax. 7.) Let the triangles ABC, DEF, be on the equal bases BC, EF, and between the same parallels AD, BF. Then

Side 23 - two angles of a triangle are together less than two right angles. Then any two of its angles shall be together less than two right angles, A CONSTRUCTION Produce the side BC to D. DEMONSTRATION Because ACD is the exterior angle of the triangle ABC, therefore the angle ACD is greater than the interior and opposite angle