Key to Robinson's New Geometry and Trigonometry, and Conic Sections and Analytical Geometry: With Some Additional Astronomical Problems. Designed for Teachers and Students

Forside
Ivison, Blakeman, Taylor & Company, 1875
 

Hva folk mener - Skriv en omtale

Vi har ikke funnet noen omtaler på noen av de vanlige stedene.

Innhold

Andre utgaver - Vis alle

Vanlige uttrykk og setninger

Populære avsnitt

Side 97 - I. The sine of the middle part is equal to the product of the tangents of the adjacent parts.
Side 84 - AC, (Fig. 25.) is to their difference ; as the tangent of half the sum of the angles ACB and ABC, to the tangent of half their difference.
Side 40 - IF from any point without a circle two straight lines be drawn, one of which cuts the circle, and the other touches it ; the rectangle contained by the whole line which cuts the circle, and the part of it without the circle,. shall be equal to the square of the line which touches it.
Side 46 - The difference of the angles at the base of any triangle, is double the angle contained by a line drawn from the vertex perpendicular to the base, and another bisecting the angle at the vertex.
Side 29 - To determine a Right-angled Triangle ; having given the Hypothenuse, and the Difference of two Lines drawn from the two acute angles to the Centre of the Inscribed Circle.
Side 276 - This little book is written and published as a part of Robinson's Mathematical Series. but of course it may be used in connection with any other series or any text-book on the subject of arithmetic. The book is gotten up handsomely and, accompanying some good text-book on arithmetic. would unquestionably do good service. The problems are classified as to subjects, rendering the book usable in classes of all grades.
Side 275 - It is gratifying to observe the perfection to which this firm has attained in the manufacture of School Books, as also the merited success of their books, for they are probnbty the most widely used of any similar publications issued in this country. All are standard and unsurpassed, and deservedly stand in the front rank...
Side 45 - If from any point within an equilateral triangle perpendiculars be drawn to the three sides, their sum is equal to a perpendicular drawn from one of the angles on the opposite side. Required proof. From the point within the triangle draw...
Side 52 - A straight line drawn from the vertex of an equilateral triangle inscribed in a circle, to any point in the opposite circumference, is equal to the sum of the two lines •which are drawn from the extremities of the base to the eame point.
Side 59 - Given one angle, a side opposite to it, and the difference of the other two sides ; to construct the triangle.

Bibliografisk informasjon