(1) sin (A+B) + sin (A − B) = 2 sin A. cos B. (2) sin (A+B) - sin (A - B)=2 cos A. sin B. (3) cos (A+B) + cos (A (4) cos (A-B) - cos (A (5) − B)=2 cos A. cos B. + B) = 2 sin A. sin B. sin (A+B) + sin (A – B) ̧ (6) tan a+tan ß: = (7) tan a- tan B= (8) cota +tan ß= (9) cot a-tan ß= (10) tan a + cot ß= =tan A. sin (a+B) cos a. cos B sin (a-B) cos a. cos B cos (a - B) tan - tan sin (0-0) (24) tan2 a tan2 B 1-tan2 a α. tan2 B sin (a + B). sin (a - ẞ) cos2 a. cos2 B cos (a+B). cos (a -B) = sin2 a. cos2 B =tan (a + ß) . tan (a – ß). sin (a +ẞ). sin (a — ß)=sin2 a — sin2 ß=cos2 ß - cos2 a. (25) cos (a + B). cos (a-B)=cos2 a - sin2 ß=cos2B-sin2 a. (31) (32) (33) sin (0+). cos 0—cos (0 +$). sin 0=sin 0. cos (8+). cos + sin (0+). sin 0=cos p. (40) sin nA.cos A + cos nA. sin A=sin (n + 1) A. (41) cos (n-1) A. cos A - sin (n − 1) A. sin A=cos nA. (42) sin nA. cos (n − 1) A − cos nA. sin (n − 1) A=sin A. (43) cos (n-1) A. cos (n + 1) A-sin (n - 1) A. sin (n + 1) A should prove the second in a similar manner. The third and fourth follow at once from the first two by putting 45° for B. Example. Το prove tan (A + B) = tan A+tan B (i) By using the results of Art. 154, we have tan (A+B)= sin (A+B) sin A. cos B+cos A. sin B = Divide the numerator and the denominator of this fraction each by cos A. cos B, and we get |